GAN


2023-01-13 更新

Diffusion Models For Stronger Face Morphing Attacks

Authors:Zander Blasingame, Chen Liu

Face morphing attacks seek to deceive a Face Recognition (FR) system by presenting a morphed image consisting of the biometric qualities from two different identities with the aim of triggering a false acceptance with one of the two identities, thereby presenting a significant threat to biometric systems. The success of a morphing attack is dependent on the ability of the morphed image to represent the biometric characteristics of both identities that were used to create the image. We present a novel morphing attack that uses a Diffusion-based architecture to improve the visual fidelity of the image and improve the ability of the morphing attack to represent characteristics from both identities. We demonstrate the high fidelity of the proposed attack by evaluating its visual fidelity via the Frechet Inception Distance. Extensive experiments are conducted to measure the vulnerability of FR systems to the proposed attack. The proposed attack is compared to two state-of-the-art GAN-based morphing attacks along with two Landmark-based attacks. The ability of a morphing attack detector to detect the proposed attack is measured and compared against the other attacks. Additionally, a novel metric to measure the relative strength between morphing attacks is introduced and evaluated.
PDF 13 pages, 7 figures

点此查看论文截图

Face Attribute Editing with Disentangled Latent Vectors

Authors:Yusuf Dalva, Hamza Pehlivan, Cansu Moran, Öykü Irmak Hatipoğlu, Ayşegül Dündar

We propose an image-to-image translation framework for facial attribute editing with disentangled interpretable latent directions. Facial attribute editing task faces the challenges of targeted attribute editing with controllable strength and disentanglement in the representations of attributes to preserve the other attributes during edits. For this goal, inspired by the latent space factorization works of fixed pretrained GANs, we design the attribute editing by latent space factorization, and for each attribute, we learn a linear direction that is orthogonal to the others. We train these directions with orthogonality constraints and disentanglement losses. To project images to semantically organized latent spaces, we set an encoder-decoder architecture with attention-based skip connections. We extensively compare with previous image translation algorithms and editing with pretrained GAN works. Our extensive experiments show that our method significantly improves over the state-of-the-arts. Project page: https://yusufdalva.github.io/vecgan
PDF See https://yusufdalva.github.io/vecgan for the project webpage. arXiv admin note: substantial text overlap with arXiv:2207.03411

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录