Few-Shot


2022-12-29 更新

LAMBADA: Backward Chaining for Automated Reasoning in Natural Language

Authors:Seyed Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, Deepak Ramachandran

Remarkable progress has been made on automated reasoning with knowledge specified as unstructured, natural text, by using the power of large language models (LMs) coupled with methods such as Chain-of-Thought prompting and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to the set of axioms that support it) is significantly more efficient at proof-finding problems. We import this intuition into the LM setting and develop a Backward Chaining algorithm, which we call LAMBADA, that decomposes reasoning into four sub-modules, each of which can be simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves massive accuracy boosts over state-of-the-art forward reasoning methods on two challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
PDF 16 pages

点此查看论文截图

Prompt-Augmented Linear Probing: Scaling Beyond The Limit of Few-shot In-Context Learners

Authors:Hyunsoo Cho, Hyuhng Joon Kim, Junyeob Kim, Sang-Woo Lee, Sang-goo Lee, Kang Min Yoo, Taeuk Kim

Through in-context learning (ICL), large-scale language models are effective few-shot learners without additional model fine-tuning. However, the ICL performance does not scale well with the number of available training samples as it is limited by the inherent input length constraint of the underlying language model. Meanwhile, many studies have revealed that language models are also powerful feature extractors, allowing them to be utilized in a black-box manner and enabling the linear probing paradigm, where lightweight discriminators are trained on top of the pre-extracted input representations. This paper proposes prompt-augmented linear probing (PALP), a hybrid of linear probing and ICL, which leverages the best of both worlds. PALP inherits the scalability of linear probing and the capability of enforcing language models to derive more meaningful representations via tailoring input into a more conceivable form. Throughout in-depth investigations on various datasets, we verified that PALP significantly enhances the input representations closing the gap between ICL in the data-hungry scenario and fine-tuning in the data-abundant scenario with little training overhead, potentially making PALP a strong alternative in a black-box scenario.
PDF AAAI 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录