2022-12-28 更新

ReVISE: Self-Supervised Speech Resynthesis with Visual Input for Universal and Generalized Speech Enhancement

Authors:Wei-Ning Hsu, Tal Remez, Bowen Shi, Jacob Donley, Yossi Adi

Prior works on improving speech quality with visual input typically study each type of auditory distortion separately (e.g., separation, inpainting, video-to-speech) and present tailored algorithms. This paper proposes to unify these subjects and study Generalized Speech Enhancement, where the goal is not to reconstruct the exact reference clean signal, but to focus on improving certain aspects of speech. In particular, this paper concerns intelligibility, quality, and video synchronization. We cast the problem as audio-visual speech resynthesis, which is composed of two steps: pseudo audio-visual speech recognition (P-AVSR) and pseudo text-to-speech synthesis (P-TTS). P-AVSR and P-TTS are connected by discrete units derived from a self-supervised speech model. Moreover, we utilize self-supervised audio-visual speech model to initialize P-AVSR. The proposed model is coined ReVISE. ReVISE is the first high-quality model for in-the-wild video-to-speech synthesis and achieves superior performance on all LRS3 audio-visual enhancement tasks with a single model. To demonstrates its applicability in the real world, ReVISE is also evaluated on EasyCom, an audio-visual benchmark collected under challenging acoustic conditions with only 1.6 hours of training data. Similarly, ReVISE greatly suppresses noise and improves quality. Project page: https://wnhsu.github.io/ReVISE.


Skit-S2I: An Indian Accented Speech to Intent dataset

Authors:Shangeth Rajaa, Swaraj Dalmia, Kumarmanas Nethil

Conventional conversation assistants extract text transcripts from the speech signal using automatic speech recognition (ASR) and then predict intent from the transcriptions. Using end-to-end spoken language understanding (SLU), the intents of the speaker are predicted directly from the speech signal without requiring intermediate text transcripts. As a result, the model can optimize directly for intent classification and avoid cascading errors from ASR. The end-to-end SLU system also helps in reducing the latency of the intent prediction model. Although many datasets are available publicly for text-to-intent tasks, the availability of labeled speech-to-intent datasets is limited, and there are no datasets available in the Indian accent. In this paper, we release the Skit-S2I dataset, the first publicly available Indian-accented SLU dataset in the banking domain in a conversational tonality. We experiment with multiple baselines, compare different pretrained speech encoder’s representations, and find that SSL pretrained representations perform slightly better than ASR pretrained representations lacking prosodic features for speech-to-intent classification. The dataset and baseline code is available at \url{https://github.com/skit-ai/speech-to-intent-dataset}


StoRM: A Diffusion-based Stochastic Regeneration Model for Speech Enhancement and Dereverberation

Authors:Jean-Marie Lemercier, Julius Richter, Simon Welker, Timo Gerkmann

Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).
PDF This work has been submitted to the IEEE for publication. Copyright may be transferred without notice


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !