Domain Adaptation


2022-12-28 更新

Look Around! A Neighbor Relation Graph Learning Framework for Real Estate Appraisal

Authors:Chih-Chia Li, Wei-Yao Wang, Wei-Wei Du, Wen-Chih Peng

Real estate appraisal is a crucial issue for urban applications, which aims to value the properties on the market. Traditional methods perform appraisal based on the domain knowledge, but suffer from the efforts of hand-crafted design. Recently, several methods have been developed to automatize the valuation process by taking the property trading transaction into account when estimating the property value. However, existing methods only consider the real estate itself, ignoring the relation between the properties. Moreover, naively aggregating the information of neighbors fails to model the relationships between the transactions. To tackle these limitations, we propose a novel Neighbor Relation Graph Learning Framework (ReGram) by incorporating the relation between target transaction and surrounding neighbors with the attention mechanism. To model the influence between communities, we integrate the environmental information and the past price of each transaction from other communities. Moreover, since the target transactions in different regions share some similarities and differences of characteristics, we introduce a dynamic adapter to model the different distributions of the target transactions based on the input-related kernel weights. Extensive experiments on the real-world dataset with various scenarios demonstrate that ReGram robustly outperforms the state-of-the-art methods. Furthermore, comprehensive ablation studies were conducted to examine the effectiveness of each component in ReGram.
PDF

点此查看论文截图

Scalable Adaptive Computation for Iterative Generation

Authors:Allan Jabri, David Fleet, Ting Chen

We present the Recurrent Interface Network (RIN), a neural net architecture that allocates computation adaptively to the input according to the distribution of information, allowing it to scale to iterative generation of high-dimensional data. Hidden units of RINs are partitioned into the interface, which is locally connected to inputs, and latents, which are decoupled from inputs and can exchange information globally. The RIN block selectively reads from the interface into latents for high-capacity processing, with incremental updates written back to the interface. Stacking multiple blocks enables effective routing across local and global levels. While routing adds overhead, the cost can be amortized in recurrent computation settings where inputs change gradually while more global context persists, such as iterative generation using diffusion models. To this end, we propose a latent self-conditioning technique that “warm-starts” the latents at each iteration of the generation process. When applied to diffusion models operating directly on pixels, RINs yield state-of-the-art image and video generation without cascades or guidance, while being domain-agnostic and up to 10$\times$ more efficient compared to specialized 2D and 3D U-Nets.
PDF

点此查看论文截图

From Judgement’s Premises Towards Key Points

Authors:Oren Sultan, Rayen Dhahri, Yauheni Mardan, Tobias Eder, Georg Groh

Key Point Analysis(KPA) is a relatively new task in NLP that combines summarization and classification by extracting argumentative key points (KPs) for a topic from a collection of texts and categorizing their closeness to the different arguments. In our work, we focus on the legal domain and develop methods that identify and extract KPs from premises derived from texts of judgments. The first method is an adaptation to an existing state-of-the-art method, and the two others are new methods that we developed from scratch. We present our methods and examples of their outputs, as well a comparison between them. The full evaluation of our results is done in the matching task — match between the generated KPs to arguments (premises).
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录