I2I Translation


2022-12-20 更新

LR-CSNet: Low-Rank Deep Unfolding Network for Image Compressive Sensing

Authors:Tianfang Zhang, Lei Li, Christian Igel, Stefan Oehmcke, Fabian Gieseke, Zhenming Peng

Deep unfolding networks (DUNs) have proven to be a viable approach to compressive sensing (CS). In this work, we propose a DUN called low-rank CS network (LR-CSNet) for natural image CS. Real-world image patches are often well-represented by low-rank approximations. LR-CSNet exploits this property by adding a low-rank prior to the CS optimization task. We derive a corresponding iterative optimization procedure using variable splitting, which is then translated to a new DUN architecture. The architecture uses low-rank generation modules (LRGMs), which learn low-rank matrix factorizations, as well as gradient descent and proximal mappings (GDPMs), which are proposed to extract high-frequency features to refine image details. In addition, the deep features generated at each reconstruction stage in the DUN are transferred between stages to boost the performance. Our extensive experiments on three widely considered datasets demonstrate the promising performance of LR-CSNet compared to state-of-the-art methods in natural image CS.
PDF

点此查看论文截图

Measuring Annotator Agreement Generally across Complex Structured, Multi-object, and Free-text Annotation Tasks

Authors:Alexander Braylan, Omar Alonso, Matthew Lease

When annotators label data, a key metric for quality assurance is inter-annotator agreement (IAA): the extent to which annotators agree on their labels. Though many IAA measures exist for simple categorical and ordinal labeling tasks, relatively little work has considered more complex labeling tasks, such as structured, multi-object, and free-text annotations. Krippendorff’s alpha, best known for use with simpler labeling tasks, does have a distance-based formulation with broader applicability, but little work has studied its efficacy and consistency across complex annotation tasks. We investigate the design and evaluation of IAA measures for complex annotation tasks, with evaluation spanning seven diverse tasks: image bounding boxes, image keypoints, text sequence tagging, ranked lists, free text translations, numeric vectors, and syntax trees. We identify the difficulty of interpretability and the complexity of choosing a distance function as key obstacles in applying Krippendorff’s alpha generally across these tasks. We propose two novel, more interpretable measures, showing they yield more consistent IAA measures across tasks and annotation distance functions.
PDF

点此查看论文截图

Rethinking Label Smoothing on Multi-hop Question Answering

Authors:Zhangyue Yin, Yuxin Wang, Yiguang Wu, Hang Yan, Xiannian Hu, Xinyu Zhang, Zhao Cao, Xuanjing Huang, Xipeng Qiu

Label smoothing is a regularization technique widely used in supervised learning to improve the generalization of models on various tasks, such as image classification and machine translation. However, the effectiveness of label smoothing in multi-hop question answering (MHQA) has yet to be well studied. In this paper, we systematically analyze the role of label smoothing on various modules of MHQA and propose F1 smoothing, a novel label smoothing technique specifically designed for machine reading comprehension (MRC) tasks. We evaluate our method on the HotpotQA dataset and demonstrate its superiority over several strong baselines, including models that utilize complex attention mechanisms. Our results suggest that label smoothing can be effective in MHQA, but the choice of smoothing strategy can significantly affect performance.
PDF 8 pages, 2 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录