Diffusion Models


2022-12-20 更新

Point-E: A System for Generating 3D Point Clouds from Complex Prompts

Authors:Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, Mark Chen

While recent work on text-conditional 3D object generation has shown promising results, the state-of-the-art methods typically require multiple GPU-hours to produce a single sample. This is in stark contrast to state-of-the-art generative image models, which produce samples in a number of seconds or minutes. In this paper, we explore an alternative method for 3D object generation which produces 3D models in only 1-2 minutes on a single GPU. Our method first generates a single synthetic view using a text-to-image diffusion model, and then produces a 3D point cloud using a second diffusion model which conditions on the generated image. While our method still falls short of the state-of-the-art in terms of sample quality, it is one to two orders of magnitude faster to sample from, offering a practical trade-off for some use cases. We release our pre-trained point cloud diffusion models, as well as evaluation code and models, at https://github.com/openai/point-e.
PDF 8 pages, 11 figures

点此查看论文截图

Optimizing Prompts for Text-to-Image Generation

Authors:Yaru Hao, Zewen Chi, Li Dong, Furu Wei

Well-designed prompts can guide text-to-image models to generate amazing images. However, the performant prompts are often model-specific and misaligned with user input. Instead of laborious human engineering, we propose prompt adaptation, a general framework that automatically adapts original user input to model-preferred prompts. Specifically, we first perform supervised fine-tuning with a pretrained language model on a small collection of manually engineered prompts. Then we use reinforcement learning to explore better prompts. We define a reward function that encourages the policy to generate more aesthetically pleasing images while preserving the original user intentions. Experimental results on Stable Diffusion show that our method outperforms manual prompt engineering in terms of both automatic metrics and human preference ratings. Moreover, reinforcement learning further boosts performance, especially on out-of-domain prompts. The pretrained checkpoints are available at https://aka.ms/promptist. The demo can be found at https://aka.ms/promptist-demo.
PDF 10 pages

点此查看论文截图

Uncovering the Disentanglement Capability in Text-to-Image Diffusion Models

Authors:Qiucheng Wu, Yujian Liu, Handong Zhao, Ajinkya Kale, Trung Bui, Tong Yu, Zhe Lin, Yang Zhang, Shiyu Chang

Generative models have been widely studied in computer vision. Recently, diffusion models have drawn substantial attention due to the high quality of their generated images. A key desired property of image generative models is the ability to disentangle different attributes, which should enable modification towards a style without changing the semantic content, and the modification parameters should generalize to different images. Previous studies have found that generative adversarial networks (GANs) are inherently endowed with such disentanglement capability, so they can perform disentangled image editing without re-training or fine-tuning the network. In this work, we explore whether diffusion models are also inherently equipped with such a capability. Our finding is that for stable diffusion models, by partially changing the input text embedding from a neutral description (e.g., “a photo of person”) to one with style (e.g., “a photo of person with smile”) while fixing all the Gaussian random noises introduced during the denoising process, the generated images can be modified towards the target style without changing the semantic content. Based on this finding, we further propose a simple, light-weight image editing algorithm where the mixing weights of the two text embeddings are optimized for style matching and content preservation. This entire process only involves optimizing over around 50 parameters and does not fine-tune the diffusion model itself. Experiments show that the proposed method can modify a wide range of attributes, with the performance outperforming diffusion-model-based image-editing algorithms that require fine-tuning. The optimized weights generalize well to different images. Our code is publicly available at https://github.com/UCSB-NLP-Chang/DiffusionDisentanglement.
PDF 23 pages, 18 figures

点此查看论文截图

Difformer: Empowering Diffusion Model on Embedding Space for Text Generation

Authors:Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, Linli Xu

Diffusion models have achieved state-of-the-art synthesis quality on visual and audio tasks, and recent works adapt them to textual data by diffusing on the embedding space. But the difference between the continuous data space and the embedding space raises challenges to the diffusion model, which have not been carefully explored. In this paper, we conduct systematic studies and analyze the challenges threefold. Firstly, the data distribution is learnable for embeddings, which may lead to the collapse of the loss function. Secondly, as the norm of embedding varies between popular and rare words, adding the same noise scale will lead to sub-optimal results. In addition, we find that noises sampled from a standard Gaussian distribution may distract the diffusion process. To solve the above challenges, we propose Difformer, a denoising diffusion probabilistic model based on Transformer, which consists of three techniques including utilizing an anchor loss function, a layer normalization module for embeddings, and a norm factor to the Gaussian noise. All techniques are complementary to each other and critical to boosting the model performance together. Experiments are conducted on benchmark datasets over two seminal text generation tasks including machine translation and text summarization. The results show that Difformer significantly outperforms the embedding diffusion baselines, while achieving competitive results with strong autoregressive baselines.
PDF Work in progress

点此查看论文截图

Diffusing Surrogate Dreams of Video Scenes to Predict Video Memorability

Authors:Lorin Sweeney, Graham Healy, Alan F. Smeaton

As part of the MediaEval 2022 Predicting Video Memorability task we explore the relationship between visual memorability, the visual representation that characterises it, and the underlying concept portrayed by that visual representation. We achieve state-of-the-art memorability prediction performance with a model trained and tested exclusively on surrogate dream images, elevating concepts to the status of a cornerstone memorability feature, and finding strong evidence to suggest that the intrinsic memorability of visual content can be distilled to its underlying concept or meaning irrespective of its specific visual representational.
PDF 5 pages, 3 figures, 1 table, MediaEval-22: Multimedia Evaluation Workshop, 13-15 January 2023, Bergen, Norway and Online

点此查看论文截图

DAG: Depth-Aware Guidance with Denoising Diffusion Probabilistic Models

Authors:Gyeongnyeon Kim, Wooseok Jang, Gyuseong Lee, Susung Hong, Junyoung Seo, Seungryong Kim

In recent years, generative models have undergone significant advancement due to the success of diffusion models. The success of these models is often attributed to their use of guidance techniques, such as classifier and classifier-free methods, which provides effective mechanisms to trade-off between fidelity and diversity. However, these methods are not capable of guiding a generated image to be aware of its geometric configuration, e.g., depth, which hinders the application of diffusion models to areas that require a certain level of depth awareness. To address this limitation, we propose a novel guidance approach for diffusion models that uses estimated depth information derived from the rich intermediate representations of diffusion models. To do this, we first present a label-efficient depth estimation framework using the internal representations of diffusion models. At the sampling phase, we utilize two guidance techniques to self-condition the generated image using the estimated depth map, the first of which uses pseudo-labeling, and the subsequent one uses a depth-domain diffusion prior. Experiments and extensive ablation studies demonstrate the effectiveness of our method in guiding the diffusion models toward geometrically plausible image generation. Project page is available at https://ku-cvlab.github.io/DAG/.
PDF Project page is available at https://ku-cvlab.github.io/DAG/

点此查看论文截图

Scalable Diffusion Models with Transformers

Authors:William Peebles, Saining Xie

We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops — through increased transformer depth/width or increased number of input tokens — consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
PDF Code, project page and videos available at https://www.wpeebles.com/DiT

点此查看论文截图

MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation

Authors:Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin Jin, Baining Guo

We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion.
PDF

点此查看论文截图

2022-12-20 更新

HS-Diffusion: Learning a Semantic-Guided Diffusion Model for Head Swapping

Authors:Qinghe Wang, Lijie Liu, Miao Hua, Qian He, Pengfei Zhu, Bing Cao, Qinghua Hu

Image-based head swapping task aims to stitch a source head to another source body flawlessly. This seldom-studied task faces two major challenges: 1) Preserving the head and body from various sources while generating a seamless transition region. 2) No paired head swapping dataset and benchmark so far. In this paper, we propose an image-based head swapping framework (HS-Diffusion) which consists of a semantic-guided latent diffusion model (SG-LDM) and a semantic layout generator. We blend the semantic layouts of source head and source body, and then inpaint the transition region by the semantic layout generator, achieving a coarse-grained head swapping. SG-LDM can further implement fine-grained head swapping with the blended layout as condition by a progressive fusion process, while preserving source head and source body with high-quality reconstruction. To this end, we design a head-cover augmentation strategy for training and a neck alignment trick for geometric realism. Importantly, we construct a new image-based head swapping benchmark and propose two tailor-designed metrics (Mask-FID and Focal-FID). Extensive experiments demonstrate the superiority of our framework. The code will be available: https://github.com/qinghew/HS-Diffusion.
PDF

点此查看论文截图

Semantic Brain Decoding: from fMRI to conceptually similar image reconstruction of visual stimuli

Authors:Matteo Ferrante, Tommaso Boccato, Nicola Toschi

Brain decoding is a field of computational neuroscience that uses measurable brain activity to infer mental states or internal representations of perceptual inputs. Therefore, we propose a novel approach to brain decoding that also relies on semantic and contextual similarity. We employ an fMRI dataset of natural image vision and create a deep learning decoding pipeline inspired by the existence of both bottom-up and top-down processes in human vision. We train a linear brain-to-feature model to map fMRI activity features to visual stimuli features, assuming that the brain projects visual information onto a space that is homeomorphic to the latent space represented by the last convolutional layer of a pretrained convolutional neural network, which typically collects a variety of semantic features that summarize and highlight similarities and differences between concepts. These features are then categorized in the latent space using a nearest-neighbor strategy, and the results are used to condition a generative latent diffusion model to create novel images. From fMRI data only, we produce reconstructions of visual stimuli that match the original content very well on a semantic level, surpassing the state of the art in previous literature. We evaluate our work and obtain good results using a quantitative semantic metric (the Wu-Palmer similarity metric over the WordNet lexicon, which had an average value of 0.57) and perform a human evaluation experiment that resulted in correct evaluation, according to the multiplicity of human criteria in evaluating image similarity, in over 80% of the test set.
PDF

点此查看论文截图

LidarCLIP or: How I Learned to Talk to Point Clouds

Authors:Georg Hess, Adam Tonderski, Christoffer Petersson, Lennart Svensson, Kalle Åström

Research connecting text and images has recently seen several breakthroughs, with models like CLIP, DALL-E 2, and Stable Diffusion. However, the connection between text and other visual modalities, such as lidar data, has received less attention, prohibited by the lack of text-lidar datasets. In this work, we propose LidarCLIP, a mapping from automotive point clouds to a pre-existing CLIP embedding space. Using image-lidar pairs, we supervise a point cloud encoder with the image CLIP embeddings, effectively relating text and lidar data with the image domain as an intermediary. We show the effectiveness of LidarCLIP by demonstrating that lidar-based retrieval is generally on par with image-based retrieval, but with complementary strengths and weaknesses. By combining image and lidar features, we improve upon both single-modality methods and enable a targeted search for challenging detection scenarios under adverse sensor conditions. We also use LidarCLIP as a tool to investigate fundamental lidar capabilities through natural language. Finally, we leverage our compatibility with CLIP to explore a range of applications, such as point cloud captioning and lidar-to-image generation, without any additional training. We hope LidarCLIP can inspire future work to dive deeper into connections between text and point cloud understanding. Code and trained models available at https://github.com/atonderski/lidarclip.
PDF

点此查看论文截图

Towards Practical Plug-and-Play Diffusion Models

Authors:Hyojun Go, Yunsung Lee, Jin-Young Kim, Seunghyun Lee, Myeongho Jeong, Hyun Seung Lee, Seungtaek Choi

Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without fine-tuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we show that image classifiers, depth estimators, and semantic segmentation models can guide publicly available GLIDE through our framework in a plug-and-play manner.
PDF

点此查看论文截图

DifFace: Blind Face Restoration with Diffused Error Contraction

Authors:Zongsheng Yue, Chen Change Loy

While deep learning-based methods for blind face restoration have achieved unprecedented success, they still suffer from two major limitations. First, most of them deteriorate when facing complex degradations out of their training data. Second, these methods require multiple constraints, e.g., fidelity, perceptual, and adversarial losses, which require laborious hyper-parameter tuning to stabilize and balance their influences. In this work, we propose a novel method named DifFace that is capable of coping with unseen and complex degradations more gracefully without complicated loss designs. The key of our method is to establish a posterior distribution from the observed low-quality (LQ) image to its high-quality (HQ) counterpart. In particular, we design a transition distribution from the LQ image to the intermediate state of a pre-trained diffusion model and then gradually transmit from this intermediate state to the HQ target by recursively applying a pre-trained diffusion model. The transition distribution only relies on a restoration backbone that is trained with $L_2$ loss on some synthetic data, which favorably avoids the cumbersome training process in existing methods. Moreover, the transition distribution can contract the error of the restoration backbone and thus makes our method more robust to unknown degradations. Comprehensive experiments show that DifFace is superior to current state-of-the-art methods, especially in cases with severe degradations. Our code and model are available at https://github.com/zsyOAOA/DifFace.
PDF 21 pages

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录