2022-12-19 更新
DQnet: Cross-Model Detail Querying for Camouflaged Object Detection
Authors:Wei Sun, Chengao Liu, Linyan Zhang, Yu Li, Pengxu Wei, Chang Liu, Jialing Zou, Jianbin Jiao, Qixiang Ye
Camouflaged objects are seamlessly blended in with their surroundings, which brings a challenging detection task in computer vision. Optimizing a convolutional neural network (CNN) for camouflaged object detection (COD) tends to activate local discriminative regions while ignoring complete object extent, causing the partial activation issue which inevitably leads to missing or redundant regions of objects. In this paper, we argue that partial activation is caused by the intrinsic characteristics of CNN, where the convolution operations produce local receptive fields and experience difficulty to capture long-range feature dependency among image regions. In order to obtain feature maps that could activate full object extent, keeping the segmental results from being overwhelmed by noisy features, a novel framework termed Cross-Model Detail Querying network (DQnet) is proposed. It reasons the relations between long-range-aware representations and multi-scale local details to make the enhanced representation fully highlight the object regions and eliminate noise on non-object regions. Specifically, a vanilla ViT pretrained with self-supervised learning (SSL) is employed to model long-range dependencies among image regions. A ResNet is employed to enable learning fine-grained spatial local details in multiple scales. Then, to effectively retrieve object-related details, a Relation-Based Querying (RBQ) module is proposed to explore window-based interactions between the global representations and the multi-scale local details. Extensive experiments are conducted on the widely used COD datasets and show that our DQnet outperforms the current state-of-the-arts.
PDF
点此查看论文截图
Rethinking Cooking State Recognition with Vision Transformers
Authors:Akib Mohammed Khan, Alif Ashrafee, Reeshoon Sayera, Shahriar Ivan, Sabbir Ahmed
To ensure proper knowledge representation of the kitchen environment, it is vital for kitchen robots to recognize the states of the food items that are being cooked. Although the domain of object detection and recognition has been extensively studied, the task of object state classification has remained relatively unexplored. The high intra-class similarity of ingredients during different states of cooking makes the task even more challenging. Researchers have proposed adopting Deep Learning based strategies in recent times, however, they are yet to achieve high performance. In this study, we utilized the self-attention mechanism of the Vision Transformer (ViT) architecture for the Cooking State Recognition task. The proposed approach encapsulates the globally salient features from images, while also exploiting the weights learned from a larger dataset. This global attention allows the model to withstand the similarities between samples of different cooking objects, while the employment of transfer learning helps to overcome the lack of inductive bias by utilizing pretrained weights. To improve recognition accuracy, several augmentation techniques have been employed as well. Evaluation of our proposed framework on the `Cooking State Recognition Challenge Dataset’ has achieved an accuracy of 94.3%, which significantly outperforms the state-of-the-art.
PDF Accepted in 25th ICCIT (6 pages, 5 Figures, 5 Tables)