2022-12-15 更新
Reproducible scaling laws for contrastive language-image learning
Authors:Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, Jenia Jitsev
Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on scaling laws has primarily used private data \& models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study will be available at https://github.com/LAION-AI/scaling-laws-openclip
PDF Preprint. Under review
点此查看论文截图
ContraFeat: Contrasting Deep Features for Semantic Discovery
Authors:Xinqi Zhu, Chang Xu, Dacheng Tao
StyleGAN has shown strong potential for disentangled semantic control, thanks to its special design of multi-layer intermediate latent variables. However, existing semantic discovery methods on StyleGAN rely on manual selection of modified latent layers to obtain satisfactory manipulation results, which is tedious and demanding. In this paper, we propose a model that automates this process and achieves state-of-the-art semantic discovery performance. The model consists of an attention-equipped navigator module and losses contrasting deep-feature changes. We propose two model variants, with one contrasting samples in a binary manner, and another one contrasting samples with learned prototype variation patterns. The proposed losses are defined with pretrained deep features, based on our assumption that the features can implicitly reveal the desired semantic structure including consistency and orthogonality. Additionally, we design two metrics to quantitatively evaluate the performance of semantic discovery methods on FFHQ dataset, and also show that disentangled representations can be derived via a simple training process. Experimentally, our models can obtain state-of-the-art semantic discovery results without relying on latent layer-wise manual selection, and these discovered semantics can be used to manipulate real-world images.
PDF AAAI23
点此查看论文截图
One-shot recognition of any material anywhere using contrastive learning with physics-based rendering
Authors:Manuel S. Drehwald, Sagi Eppel, Jolina Li, Han Hao, Alan Aspuru-Guzik
We present MatSim: a synthetic dataset, a benchmark, and a method for computer vision based recognition of similarities and transitions between materials and textures, focusing on identifying any material under any conditions using one or a few examples (one-shot learning). The visual recognition of materials is essential to everything from examining food while cooking to inspecting agriculture, chemistry, and industrial products. In this work, we utilize giant repositories used by computer graphics artists to generate a new CGI dataset for material similarity. We use physics-based rendering (PBR) repositories for visual material simulation, assign these materials random 3D objects, and render images with a vast range of backgrounds and illumination conditions (HDRI). We add a gradual transition between materials to support applications with a smooth transition between states (like gradually cooked food). We also render materials inside transparent containers to support beverage and chemistry lab use cases. We then train a contrastive learning network to generate a descriptor that identifies unfamiliar materials using a single image. We also present a new benchmark for a few-shot material recognition that contains a wide range of real-world examples, including the state of a chemical reaction, rotten/fresh fruits, states of food, different types of construction materials, types of ground, and many other use cases involving material states, transitions and subclasses. We show that a network trained on the MatSim synthetic dataset outperforms state-of-the-art models like Clip on the benchmark, despite being tested on material classes that were not seen during training. The dataset, benchmark, code and trained models are available online.
PDF for associated code and dataset, see https://zenodo.org/record/7390166#.Y5ku6mHMJH4 or https://e1.pcloud.link/publink/show?code=kZIiSQZCYU5M4HOvnQykql9jxF4h0KiC5MX and https://icedrive.net/s/A13FWzZ8V2aP9T4ufGQ1N3fBZxDF
点此查看论文截图
MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning
Authors:Xumeng Gong, Cheng Yang, Chuan Shi
Contrastive learning (CL), which can extract the information shared between different contrastive views, has become a popular paradigm for vision representation learning. Inspired by the success in computer vision, recent work introduces CL into graph modeling, dubbed as graph contrastive learning (GCL). However, generating contrastive views in graphs is more challenging than that in images, since we have little prior knowledge on how to significantly augment a graph without changing its labels. We argue that typical data augmentation techniques (e.g., edge dropping) in GCL cannot generate diverse enough contrastive views to filter out noises. Moreover, previous GCL methods employ two view encoders with exactly the same neural architecture and tied parameters, which further harms the diversity of augmented views. To address this limitation, we propose a novel paradigm named model augmented GCL (MA-GCL), which will focus on manipulating the architectures of view encoders instead of perturbing graph inputs. Specifically, we present three easy-to-implement model augmentation tricks for GCL, namely asymmetric, random and shuffling, which can respectively help alleviate high- frequency noises, enrich training instances and bring safer augmentations. All three tricks are compatible with typical data augmentations. Experimental results show that MA-GCL can achieve state-of-the-art performance on node classification benchmarks by applying the three tricks on a simple base model. Extensive studies also validate our motivation and the effectiveness of each trick. (Code, data and appendix are available at https://github.com/GXM1141/MA-GCL. )
PDF 9 pages