MMT


2022-12-13 更新

VALHALLA: Visual Hallucination for Machine Translation

Authors:Yi Li, Rameswar Panda, Yoon Kim, Chun-Fu Chen, Rogerio Feris, David Cox, Nuno Vasconcelos

Designing better machine translation systems by considering auxiliary inputs such as images has attracted much attention in recent years. While existing methods show promising performance over the conventional text-only translation systems, they typically require paired text and image as input during inference, which limits their applicability to real-world scenarios. In this paper, we introduce a visual hallucination framework, called VALHALLA, which requires only source sentences at inference time and instead uses hallucinated visual representations for multimodal machine translation. In particular, given a source sentence an autoregressive hallucination transformer is used to predict a discrete visual representation from the input text, and the combined text and hallucinated representations are utilized to obtain the target translation. We train the hallucination transformer jointly with the translation transformer using standard backpropagation with cross-entropy losses while being guided by an additional loss that encourages consistency between predictions using either ground-truth or hallucinated visual representations. Extensive experiments on three standard translation datasets with a diverse set of language pairs demonstrate the effectiveness of our approach over both text-only baselines and state-of-the-art methods. Project page: http://www.svcl.ucsd.edu/projects/valhalla.
PDF CVPR 2022

点此查看论文截图

A survey on Self Supervised learning approaches for improving Multimodal representation learning

Authors:Naman Goyal

Recently self supervised learning has seen explosive growth and use in variety of machine learning tasks because of its ability to avoid the cost of annotating large-scale datasets. This paper gives an overview for best self supervised learning approaches for multimodal learning. The presented approaches have been aggregated by extensive study of the literature and tackle the application of self supervised learning in different ways. The approaches discussed are cross modal generation, cross modal pretraining, cyclic translation, and generating unimodal labels in self supervised fashion.
PDF

点此查看论文截图

Distill the Image to Nowhere: Inversion Knowledge Distillation for Multimodal Machine Translation

Authors:Ru Peng, Yawen Zeng, Junbo Zhao

Past works on multimodal machine translation (MMT) elevate bilingual setup by incorporating additional aligned vision information. However, an image-must requirement of the multimodal dataset largely hinders MMT’s development — namely that it demands an aligned form of [image, source text, target text]. This limitation is generally troublesome during the inference phase especially when the aligned image is not provided as in the normal NMT setup. Thus, in this work, we introduce IKD-MMT, a novel MMT framework to support the image-free inference phase via an inversion knowledge distillation scheme. In particular, a multimodal feature generator is executed with a knowledge distillation module, which directly generates the multimodal feature from (only) source texts as the input. While there have been a few prior works entertaining the possibility to support image-free inference for machine translation, their performances have yet to rival the image-must translation. In our experiments, we identify our method as the first image-free approach to comprehensively rival or even surpass (almost) all image-must frameworks, and achieved the state-of-the-art result on the often-used Multi30k benchmark. Our code and data are available at: https://github.com/pengr/IKD-mmt/tree/master..
PDF Long paper accepted by EMNLP2022 main conference

点此查看论文截图

ERNIE-UniX2: A Unified Cross-lingual Cross-modal Framework for Understanding and Generation

Authors:Bin Shan, Yaqian Han, Weichong Yin, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang

Recent cross-lingual cross-modal works attempt to extend Vision-Language Pre-training (VLP) models to non-English inputs and achieve impressive performance. However, these models focus only on understanding tasks utilizing encoder-only architecture. In this paper, we propose ERNIE-UniX2, a unified cross-lingual cross-modal pre-training framework for both generation and understanding tasks. ERNIE-UniX2 integrates multiple pre-training paradigms (e.g., contrastive learning and language modeling) based on encoder-decoder architecture and attempts to learn a better joint representation across languages and modalities. Furthermore, ERNIE-UniX2 can be seamlessly fine-tuned for varieties of generation and understanding downstream tasks. Pre-trained on both multilingual text-only and image-text datasets, ERNIE-UniX2 achieves SOTA results on various cross-lingual cross-modal generation and understanding tasks such as multimodal machine translation and multilingual visual question answering.
PDF 13 pages, 2 figures

点此查看论文截图

Channel Exchanging Networks for Multimodal and Multitask Dense Image Prediction

Authors:Yikai Wang, Fuchun Sun, Wenbing Huang, Fengxiang He, Dacheng Tao

Multimodal fusion and multitask learning are two vital topics in machine learning. Despite the fruitful progress, existing methods for both problems are still brittle to the same challenge — it remains dilemmatic to integrate the common information across modalities (resp. tasks) meanwhile preserving the specific patterns of each modality (resp. task). Besides, while they are actually closely related to each other, multimodal fusion and multitask learning are rarely explored within the same methodological framework before. In this paper, we propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for multimodal and multitask dense image prediction. At its core, CEN adaptively exchanges channels between subnetworks of different modalities. Specifically, the channel exchanging process is self-guided by individual channel importance that is measured by the magnitude of Batch-Normalization (BN) scaling factor during training. For the application of dense image prediction, the validity of CEN is tested by four different scenarios: multimodal fusion, cycle multimodal fusion, multitask learning, and multimodal multitask learning. Extensive experiments on semantic segmentation via RGB-D data and image translation through multi-domain input verify the effectiveness of CEN compared to state-of-the-art methods. Detailed ablation studies have also been carried out, which demonstrate the advantage of each component we propose. Our code is available at https://github.com/yikaiw/CEN.
PDF Accepted by TPAMI 2022. Code is available at https://github.com/yikaiw/CEN. arXiv admin note: text overlap with arXiv:2011.05005

点此查看论文截图

On Vision Features in Multimodal Machine Translation

Authors:Bei Li, Chuanhao Lv, Zefan Zhou, Tao Zhou, Tong Xiao, Anxiang Ma, JingBo Zhu

Previous work on multimodal machine translation (MMT) has focused on the way of incorporating vision features into translation but little attention is on the quality of vision models. In this work, we investigate the impact of vision models on MMT. Given the fact that Transformer is becoming popular in computer vision, we experiment with various strong models (such as Vision Transformer) and enhanced features (such as object-detection and image captioning). We develop a selective attention model to study the patch-level contribution of an image in MMT. On detailed probing tasks, we find that stronger vision models are helpful for learning translation from the visual modality. Our results also suggest the need of carefully examining MMT models, especially when current benchmarks are small-scale and biased. Our code could be found at \url{https://github.com/libeineu/fairseq_mmt}.
PDF Long paper accepted by ACL2022 main conference

点此查看论文截图

STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation

Authors:Qingkai Fang, Rong Ye, Lei Li, Yang Feng, Mingxuan Wang

How to learn a better speech representation for end-to-end speech-to-text translation (ST) with limited labeled data? Existing techniques often attempt to transfer powerful machine translation (MT) capabilities to ST, but neglect the representation discrepancy across modalities. In this paper, we propose the Speech-TExt Manifold Mixup (STEMM) method to calibrate such discrepancy. Specifically, we mix up the representation sequences of different modalities, and take both unimodal speech sequences and multimodal mixed sequences as input to the translation model in parallel, and regularize their output predictions with a self-learning framework. Experiments on MuST-C speech translation benchmark and further analysis show that our method effectively alleviates the cross-modal representation discrepancy, and achieves significant improvements over a strong baseline on eight translation directions.
PDF ACL 2022 main conference

点此查看论文截图

Multilingual Multimodal Learning with Machine Translated Text

Authors:Chen Qiu, Dan Oneata, Emanuele Bugliarello, Stella Frank, Desmond Elliott

Most vision-and-language pretraining research focuses on English tasks. However, the creation of multilingual multimodal evaluation datasets (e.g. Multi30K, xGQA, XVNLI, and MaRVL) poses a new challenge in finding high-quality training data that is both multilingual and multimodal. In this paper, we investigate whether machine translating English multimodal data can be an effective proxy for the lack of readily available multilingual data. We call this framework TD-MML: Translated Data for Multilingual Multimodal Learning, and it can be applied to any multimodal dataset and model. We apply it to both pretraining and fine-tuning data with a state-of-the-art model. In order to prevent models from learning from low-quality translated text, we propose two metrics for automatically removing such translations from the resulting datasets. In experiments on five tasks across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning, both at pretraining and fine-tuning.
PDF EMNLP 2022

点此查看论文截图

Neural Machine Translation with Phrase-Level Universal Visual Representations

Authors:Qingkai Fang, Yang Feng

Multimodal machine translation (MMT) aims to improve neural machine translation (NMT) with additional visual information, but most existing MMT methods require paired input of source sentence and image, which makes them suffer from shortage of sentence-image pairs. In this paper, we propose a phrase-level retrieval-based method for MMT to get visual information for the source input from existing sentence-image data sets so that MMT can break the limitation of paired sentence-image input. Our method performs retrieval at the phrase level and hence learns visual information from pairs of source phrase and grounded region, which can mitigate data sparsity. Furthermore, our method employs the conditional variational auto-encoder to learn visual representations which can filter redundant visual information and only retain visual information related to the phrase. Experiments show that the proposed method significantly outperforms strong baselines on multiple MMT datasets, especially when the textual context is limited.
PDF ACL 2022 main conference

点此查看论文截图

Supervised Visual Attention for Simultaneous Multimodal Machine Translation

Authors:Veneta Haralampieva, Ozan Caglayan, Lucia Specia

Recently, there has been a surge in research in multimodal machine translation (MMT), where additional modalities such as images are used to improve translation quality of textual systems. A particular use for such multimodal systems is the task of simultaneous machine translation, where visual context has been shown to complement the partial information provided by the source sentence, especially in the early phases of translation. In this paper, we propose the first Transformer-based simultaneous MMT architecture, which has not been previously explored in the field. Additionally, we extend this model with an auxiliary supervision signal that guides its visual attention mechanism using labelled phrase-region alignments. We perform comprehensive experiments on three language directions and conduct thorough quantitative and qualitative analyses using both automatic metrics and manual inspection. Our results show that (i) supervised visual attention consistently improves the translation quality of the MMT models, and (ii) fine-tuning the MMT with supervision loss enabled leads to better performance than training the MMT from scratch. Compared to the state-of-the-art, our proposed model achieves improvements of up to 2.3 BLEU and 3.5 METEOR points.
PDF Accepted to Journal of Artificial Intelligence Research (JAIR)

点此查看论文截图

IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and Languages

Authors:Emanuele Bugliarello, Fangyu Liu, Jonas Pfeiffer, Siva Reddy, Desmond Elliott, Edoardo Maria Ponti, Ivan Vulić

Reliable evaluation benchmarks designed for replicability and comprehensiveness have driven progress in machine learning. Due to the lack of a multilingual benchmark, however, vision-and-language research has mostly focused on English language tasks. To fill this gap, we introduce the Image-Grounded Language Understanding Evaluation benchmark. IGLUE brings together - by both aggregating pre-existing datasets and creating new ones - visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages. Our benchmark enables the evaluation of multilingual multimodal models for transfer learning, not only in a zero-shot setting, but also in newly defined few-shot learning setups. Based on the evaluation of the available state-of-the-art models, we find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks. Moreover, downstream performance is partially explained by the amount of available unlabelled textual data for pretraining, and only weakly by the typological distance of target-source languages. We hope to encourage future research efforts in this area by releasing the benchmark to the community.
PDF ICML 2022

点此查看论文截图

VISA: An Ambiguous Subtitles Dataset for Visual Scene-Aware Machine Translation

Authors:Yihang Li, Shuichiro Shimizu, Weiqi Gu, Chenhui Chu, Sadao Kurohashi

Existing multimodal machine translation (MMT) datasets consist of images and video captions or general subtitles, which rarely contain linguistic ambiguity, making visual information not so effective to generate appropriate translations. We introduce VISA, a new dataset that consists of 40k Japanese-English parallel sentence pairs and corresponding video clips with the following key features: (1) the parallel sentences are subtitles from movies and TV episodes; (2) the source subtitles are ambiguous, which means they have multiple possible translations with different meanings; (3) we divide the dataset into Polysemy and Omission according to the cause of ambiguity. We show that VISA is challenging for the latest MMT system, and we hope that the dataset can facilitate MMT research. The VISA dataset is available at: https://github.com/ku-nlp/VISA.
PDF Accepted by LREC2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录