Speech


2022-12-09 更新

Generating Holistic 3D Human Motion from Speech

Authors:Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao, Yandong Wen, Timo Bolkart, Dacheng Tao, Michael J. Black

This work addresses the problem of generating 3D holistic body motions from human speech. Given a speech recording, we synthesize sequences of 3D body poses, hand gestures, and facial expressions that are realistic and diverse. To achieve this, we first build a high-quality dataset of 3D holistic body meshes with synchronous speech. We then define a novel speech-to-motion generation framework in which the face, body, and hands are modeled separately. The separated modeling stems from the fact that face articulation strongly correlates with human speech, while body poses and hand gestures are less correlated. Specifically, we employ an autoencoder for face motions, and a compositional vector-quantized variational autoencoder (VQ-VAE) for the body and hand motions. The compositional VQ-VAE is key to generating diverse results. Additionally, we propose a cross-conditional autoregressive model that generates body poses and hand gestures, leading to coherent and realistic motions. Extensive experiments and user studies demonstrate that our proposed approach achieves state-of-the-art performance both qualitatively and quantitatively. Our novel dataset and code will be released for research purposes at https://talkshow.is.tue.mpg.de.
PDF Project Webpage: https://talkshow.is.tue.mpg.de

点此查看论文截图

Lattice-Free Sequence Discriminative Training for Phoneme-Based Neural Transducers

Authors:Zijian Yang, Wei Zhou, Ralf Schlüter, Hermann Ney

Recently, RNN-Transducers have achieved remarkable results on various automatic speech recognition tasks. However, lattice-free sequence discriminative training methods, which obtain superior performance in hybrid modes, are rarely investigated in RNN-Transducers. In this work, we propose three lattice-free training objectives, namely lattice-free maximum mutual information, lattice-free segment-level minimum Bayes risk, and lattice-free minimum Bayes risk, which are used for the final posterior output of the phoneme-based neural transducer with a limited context dependency. Compared to criteria using N-best lists, lattice-free methods eliminate the decoding step for hypotheses generation during training, which leads to more efficient training. Experimental results show that lattice-free methods gain up to 6.5% relative improvement in word error rate compared to a sequence-level cross-entropy trained model. Compared to the N-best-list based minimum Bayes risk objectives, lattice-free methods gain 40% - 70% relative training time speedup with a small degradation in performance.
PDF submitted to ICASSP 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录