Few-Shot


2022-12-09 更新

Successive Prompting for Decomposing Complex Questions

Authors:Dheeru Dua, Shivanshu Gupta, Sameer Singh, Matt Gardner

Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting’’, where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model’s ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.
PDF

点此查看论文截图

Demystifying Prompts in Language Models via Perplexity Estimation

Authors:Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith, Luke Zettlemoyer

Language models can be prompted to perform a wide variety of zero- and few-shot learning problems. However, performance varies significantly with the choice of prompt, and we do not yet understand why this happens or how to pick the best prompts. In this work, we analyze the factors that contribute to this variance and establish a new empirical hypothesis: the performance of a prompt is coupled with the extent to which the model is familiar with the language it contains. Over a wide range of tasks, we show that the lower the perplexity of the prompt is, the better the prompt is able to perform the task. As a result, we devise a method for creating prompts: (1) automatically extend a small seed set of manually written prompts by paraphrasing using GPT3 and backtranslation and (2) choose the lowest perplexity prompts to get significant gains in performance.
PDF

点此查看论文截图

Frozen CLIP Model is Efficient Point Cloud Backbone

Authors:Xiaoshui Huang, Sheng Li, Wentao Qu, Tong He, Yifan Zuo, Wanli Ouyang

The pretraining-finetuning paradigm has demonstrated great success in NLP and 2D image fields because of the high-quality representation ability and transferability of their pretrained models. However, pretraining such a strong model is difficult in the 3D point cloud field since the training data is limited and point cloud collection is expensive. This paper introduces \textbf{E}fficient \textbf{P}oint \textbf{C}loud \textbf{L}earning (EPCL), an effective and efficient point cloud learner for directly training high-quality point cloud models with a frozen CLIP model. Our EPCL connects the 2D and 3D modalities by semantically aligning the 2D features and point cloud features without paired 2D-3D data. Specifically, the input point cloud is divided into a sequence of tokens and directly fed into the frozen CLIP model to learn point cloud representation. Furthermore, we design a task token to narrow the gap between 2D images and 3D point clouds. Comprehensive experiments on 3D detection, semantic segmentation, classification and few-shot learning demonstrate that the 2D CLIP model can be an efficient point cloud backbone and our method achieves state-of-the-art accuracy on both real-world and synthetic downstream tasks. Code will be available.
PDF Technical report

点此查看论文截图

LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models

Authors:Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, Yu Su

This study focuses on embodied agents that can follow natural language instructions to complete complex tasks in a visually-perceived environment. Existing methods rely on a large amount of (instruction, gold trajectory) pairs to learn a good policy. The high data cost and poor sample efficiency prevents the development of versatile agents that are capable of many tasks and can learn new tasks quickly. In this work, we propose a novel method, LLM-Planner, that harnesses the power of large language models (LLMs) such as GPT-3 to do few-shot planning for embodied agents. We further propose a simple but effective way to enhance LLMs with physical grounding to generate plans that are grounded in the current environment. Experiments on the ALFRED dataset show that our method can achieve very competitive few-shot performance, even outperforming several recent baselines that are trained using the full training data despite using less than 0.5% of paired training data. Existing methods can barely complete any task successfully under the same few-shot setting. Our work opens the door for developing versatile and sample-efficient embodied agents that can quickly learn many tasks.
PDF 13 pages, 5 figures

点此查看论文截图

Few-shot Medical Image Segmentation with Cycle-resemblance Attention

Authors:Hao Ding, Changchang Sun, Hao Tang, Dawen Cai, Yan Yan

Recently, due to the increasing requirements of medical imaging applications and the professional requirements of annotating medical images, few-shot learning has gained increasing attention in the medical image semantic segmentation field. To perform segmentation with limited number of labeled medical images, most existing studies use Proto-typical Networks (PN) and have obtained compelling success. However, these approaches overlook the query image features extracted from the proposed representation network, failing to preserving the spatial connection between query and support images. In this paper, we propose a novel self-supervised few-shot medical image segmentation network and introduce a novel Cycle-Resemblance Attention (CRA) module to fully leverage the pixel-wise relation between query and support medical images. Notably, we first line up multiple attention blocks to refine more abundant relation information. Then, we present CRAPNet by integrating the CRA module with a classic prototype network, where pixel-wise relations between query and support features are well recaptured for segmentation. Extensive experiments on two different medical image datasets, e.g., abdomen MRI and abdomen CT, demonstrate the superiority of our model over existing state-of-the-art methods.
PDF Work accepted to WACV 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录