2022-12-08 更新
Combining imitation and deep reinforcement learning to accomplish human-level performance on a virtual foraging task
Authors:Vittorio Giammarino, Matthew F Dunne, Kylie N Moore, Michael E Hasselmo, Chantal E Stern, Ioannis Ch. Paschalidis
We develop a simple framework to learn bio-inspired foraging policies using human data. We conduct an experiment where humans are virtually immersed in an open field foraging environment and are trained to collect the highest amount of rewards. A Markov Decision Process (MDP) framework is introduced to model the human decision dynamics. Then, Imitation Learning (IL) based on maximum likelihood estimation is used to train Neural Networks (NN) that map human decisions to observed states. The results show that passive imitation substantially underperforms humans. We further refine the human-inspired policies via Reinforcement Learning (RL) using the on-policy Proximal Policy Optimization (PPO) algorithm which shows better stability than other algorithms and can steadily improve the policies pretrained with IL. We show that the combination of IL and RL can match human results and that good performance strongly depends on combining the allocentric information with an egocentric representation of the environment.
PDF 24 pages, 15 figures
点此查看论文截图
One-shot Implicit Animatable Avatars with Model-based Priors
Authors:Yangyi Huang, Hongwei Yi, Weiyang Liu, Haofan Wang, Boxi Wu, Wenxiao Wang, Binbin Lin, Debing Zhang, Deng Cai
Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can easily reconstruct the body geometry and infer the full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT introduces the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pre-trained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed current state-of-the-art avatar creation methods when only a single image is available. Code will be public for reseach purpose at https://elicit3d.github.io .
PDF Project website: https://elicit3d.github.io