强化学习


2022-12-08 更新

What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Authors:Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, Fei Miao

Various types of Multi-Agent Reinforcement Learning (MARL) methods have been developed, assuming that agents’ policies are based on true states. Recent works have improved the robustness of MARL under uncertainties from the reward, transition probability, or other partners’ policies. However, in real-world multi-agent systems, state estimations may be perturbed by sensor measurement noise or even adversaries. Agents’ policies trained with only true state information will deviate from optimal solutions when facing adversarial state perturbations during execution. MARL under adversarial state perturbations has limited study. Hence, in this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to study the fundamental properties of MARL under state uncertainties. We prove that the optimal agent policy and the robust Nash equilibrium do not always exist for an SAMG. Instead, we define the solution concept, robust agent policy, of the proposed SAMG under adversarial state perturbations, where agents want to maximize the worst-case expected state value. We then design a gradient descent ascent-based robust MARL algorithm to learn the robust policies for the MARL agents. Our experiments show that adversarial state perturbations decrease agents’ rewards for several baselines from the existing literature, while our algorithm outperforms baselines with state perturbations and significantly improves the robustness of the MARL policies under state uncertainties.
PDF

点此查看论文截图

E-MAPP: Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance

Authors:Can Chang, Ni Mu, Jiajun Wu, Ling Pan, Huazhe Xu

A critical challenge in multi-agent reinforcement learning(MARL) is for multiple agents to efficiently accomplish complex, long-horizon tasks. The agents often have difficulties in cooperating on common goals, dividing complex tasks, and planning through several stages to make progress. We propose to address these challenges by guiding agents with programs designed for parallelization, since programs as a representation contain rich structural and semantic information, and are widely used as abstractions for long-horizon tasks. Specifically, we introduce Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance(E-MAPP), a novel framework that leverages parallel programs to guide multiple agents to efficiently accomplish goals that require planning over $10+$ stages. E-MAPP integrates the structural information from a parallel program, promotes the cooperative behaviors grounded in program semantics, and improves the time efficiency via a task allocator. We conduct extensive experiments on a series of challenging, long-horizon cooperative tasks in the Overcooked environment. Results show that E-MAPP outperforms strong baselines in terms of the completion rate, time efficiency, and zero-shot generalization ability by a large margin.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录