2022-12-02 更新
FLAIR #1: semantic segmentation and domain adaptation dataset
Authors:Anatol Garioud, Stéphane Peillet, Eva Bookjans, Sébastien Giordano, Boris Wattrelos
The French National Institute of Geographical and Forest Information (IGN) has the mission to document and measure land-cover on French territory and provides referential geographical datasets, including high-resolution aerial images and topographic maps. The monitoring of land-cover plays a crucial role in land management and planning initiatives, which can have significant socio-economic and environmental impact. Together with remote sensing technologies, artificial intelligence (IA) promises to become a powerful tool in determining land-cover and its evolution. IGN is currently exploring the potential of IA in the production of high-resolution land cover maps. Notably, deep learning methods are employed to obtain a semantic segmentation of aerial images. However, territories as large as France imply heterogeneous contexts: variations in landscapes and image acquisition make it challenging to provide uniform, reliable and accurate results across all of France. The FLAIR-one dataset presented is part of the dataset currently used at IGN to establish the French national reference land cover map “Occupation du sol `a grande \’echelle” (OCS- GE).
PDF
点此查看论文截图
Concealed Object Detection for Passive Millimeter-Wave Security Imaging Based on Task-Aligned Detection Transformer
Authors:Cheng Guo, Fei Hu, Yan Hu
Passive millimeter-wave (PMMW) is a significant potential technique for human security screening. Several popular object detection networks have been used for PMMW images. However, restricted by the low resolution and high noise of PMMW images, PMMW hidden object detection based on deep learning usually suffers from low accuracy and low classification confidence. To tackle the above problems, this paper proposes a Task-Aligned Detection Transformer network, named PMMW-DETR. In the first stage, a Denoising Coarse-to-Fine Transformer (DCFT) backbone is designed to extract long- and short-range features in the different scales. In the second stage, we propose the Query Selection module to introduce learned spatial features into the network as prior knowledge, which enhances the semantic perception capability of the network. In the third stage, aiming to improve the classification performance, we perform a Task-Aligned Dual-Head block to decouple the classification and regression tasks. Based on our self-developed PMMW security screening dataset, experimental results including comparison with State-Of-The-Art (SOTA) methods and ablation study demonstrate that the PMMW-DETR obtains higher accuracy and classification confidence than previous works, and exhibits robustness to the PMMW images of low quality.
PDF
点此查看论文截图
A Dataset with Multibeam Forward-Looking Sonar for Underwater Object Detection
Authors:Kaibing Xie, Jian Yang, Kang Qiu
Multibeam forward-looking sonar (MFLS) plays an important role in underwater detection. There are several challenges to the research on underwater object detection with MFLS. Firstly, the research is lack of available dataset. Secondly, the sonar image, generally processed at pixel level and transformed to sector representation for the visual habits of human beings, is disadvantageous to the research in artificial intelligence (AI) areas. Towards these challenges, we present a novel dataset, the underwater acoustic target detection (UATD) dataset, consisting of over 9000 MFLS images captured using Tritech Gemini 1200ik sonar. Our dataset provides raw data of sonar images with annotation of 10 categories of target objects (cube, cylinder, tyres, etc). The data was collected from lake and shallow water. To verify the practicality of UATD, we apply the dataset to the state-of-the-art detectors and provide corresponding benchmarks for its accuracy and efficiency.
PDF
点此查看论文截图
BEV-LGKD: A Unified LiDAR-Guided Knowledge Distillation Framework for BEV 3D Object Detection
Authors:Jianing Li, Ming Lu, Jiaming Liu, Yandong Guo, Li Du, Shanghang Zhang
Recently, Bird’s-Eye-View (BEV) representation has gained increasing attention in multi-view 3D object detection, which has demonstrated promising applications in autonomous driving. Although multi-view camera systems can be deployed at low cost, the lack of depth information makes current approaches adopt large models for good performance. Therefore, it is essential to improve the efficiency of BEV 3D object detection. Knowledge Distillation (KD) is one of the most practical techniques to train efficient yet accurate models. However, BEV KD is still under-explored to the best of our knowledge. Different from image classification tasks, BEV 3D object detection approaches are more complicated and consist of several components. In this paper, we propose a unified framework named BEV-LGKD to transfer the knowledge in the teacher-student manner. However, directly applying the teacher-student paradigm to BEV features fails to achieve satisfying results due to heavy background information in RGB cameras. To solve this problem, we propose to leverage the localization advantage of LiDAR points. Specifically, we transform the LiDAR points to BEV space and generate the foreground mask and view-dependent mask for the teacher-student paradigm. It is to be noted that our method only uses LiDAR points to guide the KD between RGB models. As the quality of depth estimation is crucial for BEV perception, we further introduce depth distillation to our framework. Our unified framework is simple yet effective and achieves a significant performance boost. Code will be released.
PDF 12pages
Motion Informed Object Detection of Small Insects in Time-lapse Camera Recordings
Authors:Kim Bjerge, Carsten Eie Frigaard, Henrik Karstoft
Insects as pollinators play a key role in ecosystem management and world food production. However, insect populations are declining, calling for a necessary global demand of insect monitoring. Existing methods analyze video or time-lapse images of insects in nature, but the analysis is challenging since insects are small objects in complex and dynamic scenes of natural vegetation. The current paper provides a dataset of primary honeybees visiting three different plant species during two months of summer-period. The dataset consists of more than 700,000 time-lapse images from multiple cameras, including more than 100,000 annotated images. The paper presents a new method pipeline for detecting insects in time-lapse RGB-images. The pipeline consists of a two-step process. Firstly, the time-lapse RGB-images are preprocessed to enhance insects in the images. We propose a new prepossessing enhancement method: Motion-Informed-enhancement. The technique uses motion and colors to enhance insects in images. The enhanced images are subsequently fed into a Convolutional Neural network (CNN) object detector. Motion-Informed-enhancement improves the deep learning object detectors You Only Look Once (YOLO) and Faster Region-based Convolutional Neural Networks (Faster R-CNN). Using Motion-Informed-enhancement the YOLO-detector improves average micro F1-score from 0.49 to 0.71, and the Faster R-CNN-detector improves average micro F1-score from 0.32 to 0.56 on the our dataset. Our datasets are published on: https://vision.eng.au.dk/mie/
PDF 10 pages, 6 figures
点此查看论文截图
Learning to Generate Text-grounded Mask for Open-world Semantic Segmentation from Only Image-Text Pairs
Authors:Junbum Cha, Jonghwan Mun, Byungseok Roh
We tackle open-world semantic segmentation, which aims at learning to segment arbitrary visual concepts in images, by using only image-text pairs without dense annotations. Existing open-world segmentation methods have shown impressive advances by employing contrastive learning (CL) to learn diverse visual concepts and adapting the learned image-level understanding to the segmentation task. However, these methods based on CL have a discrepancy since it only considers image-text level alignment in training time, while the segmentation task requires region-text level alignment at test time. In this paper, we propose a novel Text-grounded Contrastive Learning (TCL) framework to directly align a text and a region described by the text to address the train-test discrepancy. Our method generates a segmentation mask associated with a given text, extracts grounded image embedding from the masked region, and aligns it with text embedding via TCL. The framework addresses the discrepancy by letting the model learn region-text level alignment instead of image-text level alignment and encourages the model to directly improve the quality of generated segmentation masks. In addition, for a rigorous and fair comparison, we present a unified evaluation protocol with widely used 8 semantic segmentation datasets. TCL achieves state-of-the-art zero-shot segmentation performance with large margins in all datasets. Code is available at https://github.com/kakaobrain/tcl.
PDF