Open-Set


2022-12-01 更新

Feature-Realistic Neural Fusion for Real-Time, Open Set Scene Understanding

Authors:Kirill Mazur, Edgar Sucar, Andrew J. Davison

General scene understanding for robotics requires flexible semantic representation, so that novel objects and structures which may not have been known at training time can be identified, segmented and grouped. We present an algorithm which fuses general learned features from a standard pre-trained network into a highly efficient 3D geometric neural field representation during real-time SLAM. The fused 3D feature maps inherit the coherence of the neural field’s geometry representation. This means that tiny amounts of human labelling interacting at runtime enable objects or even parts of objects to be robustly and accurately segmented in an open set manner.
PDF For our project page, see https://makezur.github.io/FeatureRealisticFusion/

点此查看论文截图

Large-Scale Open-Set Classification Protocols for ImageNet

Authors:Andres Palechor, Annesha Bhoumik, Manuel Günther

Open-Set Classification (OSC) intends to adapt closed-set classification models to real-world scenarios, where the classifier must correctly label samples of known classes while rejecting previously unseen unknown samples. Only recently, research started to investigate on algorithms that are able to handle these unknown samples correctly. Some of these approaches address OSC by including into the training set negative samples that a classifier learns to reject, expecting that these data increase the robustness of the classifier on unknown classes. Most of these approaches are evaluated on small-scale and low-resolution image datasets like MNIST, SVHN or CIFAR, which makes it difficult to assess their applicability to the real world, and to compare them among each other. We propose three open-set protocols that provide rich datasets of natural images with different levels of similarity between known and unknown classes. The protocols consist of subsets of ImageNet classes selected to provide training and testing data closer to real-world scenarios. Additionally, we propose a new validation metric that can be employed to assess whether the training of deep learning models addresses both the classification of known samples and the rejection of unknown samples. We use the protocols to compare the performance of two baseline open-set algorithms to the standard SoftMax baseline and find that the algorithms work well on negative samples that have been seen during training, and partially on out-of-distribution detection tasks, but drop performance in the presence of samples from previously unseen unknown classes.
PDF This is a pre-print of the original paper accepted at the Winter Conference on Applications of Computer Vision (WACV) 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录