场景文本检测识别


2022-12-01 更新

Runner-Up Solution to ECCV 2022 Challenge on Out of Vocabulary Scene Text Understanding: Cropped Word Recognition

Authors:Zhangzi Zhu, Yu Hao, Wenqing Zhang, Chuhui Xue, Song Bai

This report presents our 2nd place solution to ECCV 2022 challenge on Out-of-Vocabulary Scene Text Understanding (OOV-ST) : Cropped Word Recognition. This challenge is held in the context of ECCV 2022 workshop on Text in Everything (TiE), which aims to extract out-of-vocabulary words from natural scene images. In the competition, we first pre-train SCATTER on the synthetic datasets, then fine-tune the model on the training set with data augmentations. Meanwhile, two additional models are trained specifically for long and vertical texts. Finally, we combine the output from different models with different layers, different backbones, and different seeds as the final results. Our solution achieves a word accuracy of 59.45\% when considering out-of-vocabulary words only.
PDF

点此查看论文截图

Scene Text Recognition with Single-Point Decoding Network

Authors:Lei Chen, Haibo Qin, Shi-Xue Zhang, Chun Yang, Xucheng Yin

In recent years, attention-based scene text recognition methods have been very popular and attracted the interest of many researchers. Attention-based methods can adaptively focus attention on a small area or even single point during decoding, in which the attention matrix is nearly one-hot distribution. Furthermore, the whole feature maps will be weighted and summed by all attention matrices during inference, causing huge redundant computations. In this paper, we propose an efficient attention-free Single-Point Decoding Network (dubbed SPDN) for scene text recognition, which can replace the traditional attention-based decoding network. Specifically, we propose Single-Point Sampling Module (SPSM) to efficiently sample one key point on the feature map for decoding one character. In this way, our method can not only precisely locate the key point of each character but also remove redundant computations. Based on SPSM, we design an efficient and novel single-point decoding network to replace the attention-based decoding network. Extensive experiments on publicly available benchmarks verify that our SPDN can greatly improve decoding efficiency without sacrificing performance.
PDF

点此查看论文截图

MUST-VQA: MUltilingual Scene-text VQA

Authors:Emanuele Vivoli, Ali Furkan Biten, Andres Mafla, Dimosthenis Karatzas, Lluis Gomez

In this paper, we present a framework for Multilingual Scene Text Visual Question Answering that deals with new languages in a zero-shot fashion. Specifically, we consider the task of Scene Text Visual Question Answering (STVQA) in which the question can be asked in different languages and it is not necessarily aligned to the scene text language. Thus, we first introduce a natural step towards a more generalized version of STVQA: MUST-VQA. Accounting for this, we discuss two evaluation scenarios in the constrained setting, namely IID and zero-shot and we demonstrate that the models can perform on a par on a zero-shot setting. We further provide extensive experimentation and show the effectiveness of adapting multilingual language models into STVQA tasks.
PDF To be appeared in Text In Everything Workshop in ECCV 2022

点此查看论文截图

Scene Text Recognition with Semantics

Authors:Joshua Cesare Placidi, Yishu Miao, Zixu Wang, Lucia Specia

Scene Text Recognition (STR) models have achieved high performance in recent years on benchmark datasets where text images are presented with minimal noise. Traditional STR recognition pipelines take a cropped image as sole input and attempt to identify the characters present. This infrastructure can fail in instances where the input image is noisy or the text is partially obscured. This paper proposes using semantic information from the greater scene to contextualise predictions. We generate semantic vectors using object tags and fuse this information into a transformer-based architecture. The results demonstrate that our multimodal approach yields higher performance than traditional benchmark models, particularly on noisy instances.
PDF 11 pages, 7 figures

点此查看论文截图

1st Place Solution to ECCV 2022 Challenge on Out of Vocabulary Scene Text Understanding: End-to-End Recognition of Out of Vocabulary Words

Authors:Zhangzi Zhu, Chuhui Xue, Yu Hao, Wenqing Zhang, Song Bai

Scene text recognition has attracted increasing interest in recent years due to its wide range of applications in multilingual translation, autonomous driving, etc. In this report, we describe our solution to the Out of Vocabulary Scene Text Understanding (OOV-ST) Challenge, which aims to extract out-of-vocabulary (OOV) words from natural scene images. Our oCLIP-based model achieves 28.59\% in h-mean which ranks 1st in end-to-end OOV word recognition track of OOV Challenge in ECCV2022 TiE Workshop.
PDF Report to ECCV TiE OOV competition

点此查看论文截图

A Scene-Text Synthesis Engine Achieved Through Learning from Decomposed Real-World Data

Authors:Zhengmi Tang, Tomo Miyazaki, Shinichiro Omachi

Scene-text image synthesis techniques aimed at naturally composing text instances on background scene images are very appealing for training deep neural networks because they can provide accurate and comprehensive annotation information. Prior studies have explored generating synthetic text images on two-dimensional and three-dimensional surfaces based on rules derived from real-world observations. Some of these studies have proposed generating scene-text images from learning; however, owing to the absence of a suitable training dataset, unsupervised frameworks have been explored to learn from existing real-world data, which may not result in a robust performance. To ease this dilemma and facilitate research on learning-based scene text synthesis, we propose DecompST, a real-world dataset prepared using public benchmarks, with three types of annotations: quadrilateral-level BBoxes, stroke-level text masks, and text-erased images. Using the DecompST dataset, we propose an image synthesis engine that includes a text location proposal network (TLPNet) and a text appearance adaptation network (TAANet). TLPNet first predicts the suitable regions for text embedding. TAANet then adaptively changes the geometry and color of the text instance according to the context of the background. Our comprehensive experiments verified the effectiveness of the proposed method for generating pretraining data for scene text detectors.
PDF

点此查看论文截图

Scene Text Synthesis for Efficient and Effective Deep Network Training

Authors:Changgong Zhang, Fangneng Zhan, Hongyuan Zhu, Shijian Lu

A large amount of annotated training images is critical for training accurate and robust deep network models but the collection of a large amount of annotated training images is often time-consuming and costly. Image synthesis alleviates this constraint by generating annotated training images automatically by machines which has attracted increasing interest in the recent deep learning research. We develop an innovative image synthesis technique that composes annotated training images by realistically embedding foreground objects of interest (OOI) into background images. The proposed technique consists of two key components that in principle boost the usefulness of the synthesized images in deep network training. The first is context-aware semantic coherence which ensures that the OOI are placed around semantically coherent regions within the background image. The second is harmonious appearance adaptation which ensures that the embedded OOI are agreeable to the surrounding background from both geometry alignment and appearance realism. The proposed technique has been evaluated over two related but very different computer vision challenges, namely, scene text detection and scene text recognition. Experiments over a number of public datasets demonstrate the effectiveness of our proposed image synthesis technique - the use of our synthesized images in deep network training is capable of achieving similar or even better scene text detection and scene text recognition performance as compared with using real images.
PDF 8 pages, 5 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录