Open-Set


2022-11-30 更新

Feature Decoupling in Self-supervised Representation Learning for Open Set Recognition

Authors:Jingyun Jia, Philip K. Chan

Assuming unknown classes could be present during classification, the open set recognition (OSR) task aims to classify an instance into a known class or reject it as unknown. In this paper, we use a two-stage training strategy for the OSR problems. In the first stage, we introduce a self-supervised feature decoupling method that finds the content features of the input samples from the known classes. Specifically, our feature decoupling approach learns a representation that can be split into content features and transformation features. In the second stage, we fine-tune the content features with the class labels. The fine-tuned content features are then used for the OSR problems. Moreover, we consider an unsupervised OSR scenario, where we cluster the content features learned from the first stage. To measure representation quality, we introduce intra-inter ratio (IIR). Our experimental results indicate that our proposed self-supervised approach outperforms others in image and malware OSR problems. Also, our analyses indicate that IIR is correlated with OSR performance.
PDF

点此查看论文截图

Domain Adaptation under Open Set Label Shift

Authors:Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton

We introduce the problem of domain adaptation under Open Set Label Shift (OSLS) where the label distribution can change arbitrarily and a new class may arrive during deployment, but the class-conditional distributions p(x|y) are domain-invariant. OSLS subsumes domain adaptation under label shift and Positive-Unlabeled (PU) learning. The learner’s goals here are two-fold: (a) estimate the target label distribution, including the novel class; and (b) learn a target classifier. First, we establish necessary and sufficient conditions for identifying these quantities. Second, motivated by advances in label shift and PU learning, we propose practical methods for both tasks that leverage black-box predictors. Unlike typical Open Set Domain Adaptation (OSDA) problems, which tend to be ill-posed and amenable only to heuristics, OSLS offers a well-posed problem amenable to more principled machinery. Experiments across numerous semi-synthetic benchmarks on vision, language, and medical datasets demonstrate that our methods consistently outperform OSDA baselines, achieving 10—25% improvements in target domain accuracy. Finally, we analyze the proposed methods, establishing finite-sample convergence to the true label marginal and convergence to optimal classifier for linear models in a Gaussian setup. Code is available at https://github.com/acmi-lab/Open-Set-Label-Shift.
PDF Accepted at NeurIPS 2022

点此查看论文截图

Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation

Authors:JoonHo Jang, Byeonghu Na, DongHyeok Shin, Mingi Ji, Kyungwoo Song, Il-Chul Moon

Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with $\textit{unknown}$ classes leads to negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing $\textit{known}$ classes. However, this $\textit{known}$-only matching may fail to learn the target-$\textit{unknown}$ feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which $\textit{aligns}$ the source and the target-$\textit{known}$ distribution while simultaneously $\textit{segregating}$ the target-$\textit{unknown}$ distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed $\textit{unknown-aware}$ feature alignment, so we can guarantee both $\textit{alignment}$ and $\textit{segregation}$ theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting state-of-the-art performances.
PDF Accepted at NeurIPS 2022

点此查看论文截图

Rectifying Open-set Object Detection: A Taxonomy, Practical Applications, and Proper Evaluation

Authors:Yusuke Hosoya, Masanori Suganuma, Takayuki Okatani

Open-set object detection (OSOD) has recently gained attention. It is to detect unknown objects while correctly detecting known objects. In this paper, we first point out that the recent studies’ formalization of OSOD, which generalizes open-set recognition (OSR) and thus considers an unlimited variety of unknown objects, has a fundamental issue. This issue emerges from the difference between image classification and object detection, making it hard to evaluate OSOD methods’ performance properly. We then introduce a novel scenario of OSOD, which considers known and unknown classes within a specified super-class of object classes. This new scenario has practical applications and is free from the above issue, enabling proper evaluation of OSOD performance and probably making the problem more manageable. Finally, we experimentally evaluate existing OSOD methods with the new scenario using multiple datasets, showing that the current state-of-the-art OSOD methods attain limited performance similar to a simple baseline method. The paper also presents a taxonomy of OSOD that clarifies different problem formalizations. We hope our study helps the community reconsider OSOD problems and progress in the right direction.
PDF 17 pages, 7 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录