Anti-Spoofing


2022-11-30 更新

Generative Domain Adaptation for Face Anti-Spoofing

Authors:Qianyu Zhou, Ke-Yue Zhang, Taiping Yao, Ran Yi, Kekai Sheng, Shouhong Ding, Lizhuang Ma

Face anti-spoofing (FAS) approaches based on unsupervised domain adaption (UDA) have drawn growing attention due to promising performances for target scenarios. Most existing UDA FAS methods typically fit the trained models to the target domain via aligning the distribution of semantic high-level features. However, insufficient supervision of unlabeled target domains and neglect of low-level feature alignment degrade the performances of existing methods. To address these issues, we propose a novel perspective of UDA FAS that directly fits the target data to the models, i.e., stylizes the target data to the source-domain style via image translation, and further feeds the stylized data into the well-trained source model for classification. The proposed Generative Domain Adaptation (GDA) framework combines two carefully designed consistency constraints: 1) Inter-domain neural statistic consistency guides the generator in narrowing the inter-domain gap. 2) Dual-level semantic consistency ensures the semantic quality of stylized images. Besides, we propose intra-domain spectrum mixup to further expand target data distributions to ensure generalization and reduce the intra-domain gap. Extensive experiments and visualizations demonstrate the effectiveness of our method against the state-of-the-art methods.
PDF Accepted to European Conference on Computer Vision (ECCV), 2022

点此查看论文截图

Face Anti-Spoofing from the Perspective of Data Sampling

Authors:Usman Muhammad, Mourad Oussalah

Without deploying face anti-spoofing countermeasures, face recognition systems can be spoofed by presenting a printed photo, a video, or a silicon mask of a genuine user. Thus, face presentation attack detection (PAD) plays a vital role in providing secure facial access to digital devices. Most existing video-based PAD countermeasures lack the ability to cope with long-range temporal variations in videos. Moreover, the key-frame sampling prior to the feature extraction step has not been widely studied in the face anti-spoofing domain. To mitigate these issues, this paper provides a data sampling approach by proposing a video processing scheme that models the long-range temporal variations based on Gaussian Weighting Function. Specifically, the proposed scheme encodes the consecutive t frames of video sequences into a single RGB image based on a Gaussian-weighted summation of the t frames. Using simply the data sampling scheme alone, we demonstrate that state-of-the-art performance can be achieved without any bells and whistles in both intra-database and inter-database testing scenarios for the three public benchmark datasets; namely, Replay-Attack, MSU-MFSD, and CASIA-FASD. In particular, the proposed scheme provides a much lower error (from 15.2% to 6.7% on CASIA-FASD and 5.9% to 4.9% on Replay-Attack) compared to baselines in cross-database scenarios.
PDF

点此查看论文截图

Learning Facial Liveness Representation for Domain Generalized Face Anti-spoofing

Authors:Zih-Ching Chen, Lin-Hsi Tsao, Chin-Lun Fu, Shang-Fu Chen, Yu-Chiang Frank Wang

Face anti-spoofing (FAS) aims at distinguishing face spoof attacks from the authentic ones, which is typically approached by learning proper models for performing the associated classification task. In practice, one would expect such models to be generalized to FAS in different image domains. Moreover, it is not practical to assume that the type of spoof attacks would be known in advance. In this paper, we propose a deep learning model for addressing the aforementioned domain-generalized face anti-spoofing task. In particular, our proposed network is able to disentangle facial liveness representation from the irrelevant ones (i.e., facial content and image domain features). The resulting liveness representation exhibits sufficient domain invariant properties, and thus it can be applied for performing domain-generalized FAS. In our experiments, we conduct experiments on five benchmark datasets with various settings, and we verify that our model performs favorably against state-of-the-art approaches in identifying novel types of spoof attacks in unseen image domains.
PDF Accepted to ICME 2022

点此查看论文截图

Generalizable Method for Face Anti-Spoofing with Semi-Supervised Learning

Authors:Nikolay Sergievskiy, Roman Vlasov, Roman Trusov

Face anti-spoofing has drawn a lot of attention due to the high security requirements in biometric authentication systems. Bringing face biometric to commercial hardware became mostly dependent on developing reliable methods for detecting fake login sessions without specialized sensors. Current CNN-based method perform well on the domains they were trained for, but often show poor generalization on previously unseen datasets. In this paper we describe a method for utilizing unsupervised pretraining for improving performance across multiple datasets without any adaptation, introduce the Entry Antispoofing Dataset for supervised fine-tuning, and propose a multi-class auxiliary classification layer for augmenting the binary classification task of detecting spoofing attempts with explicit interpretable signals. We demonstrate the efficiency of our model by achieving state-of-the-art results on cross-dataset testing on MSU-MFSD, Replay-Attack, and OULU-NPU datasets.
PDF

点此查看论文截图

Forensicability Assessment of Questioned Images in Recapturing Detection

Authors:Changsheng Chen, Lin Zhao, Rizhao Cai, Zitong Yu, Jiwu Huang, Alex C. Kot

Recapture detection of face and document images is an important forensic task. With deep learning, the performances of face anti-spoofing (FAS) and recaptured document detection have been improved significantly. However, the performances are not yet satisfactory on samples with weak forensic cues. The amount of forensic cues can be quantified to allow a reliable forensic result. In this work, we propose a forensicability assessment network to quantify the forensicability of the questioned samples. The low-forensicability samples are rejected before the actual recapturing detection process to improve the efficiency of recapturing detection systems. We first extract forensicability features related to both image quality assessment and forensic tasks. By exploiting domain knowledge of the forensic application in image quality and forensic features, we define three task-specific forensicability classes and the initialized locations in the feature space. Based on the extracted features and the defined centers, we train the proposed forensic assessment network (FANet) with cross-entropy loss and update the centers with a momentum-based update method. We integrate the trained FANet with practical recapturing detection schemes in face anti-spoofing and recaptured document detection tasks. Experimental results show that, for a generic CNN-based FAS scheme, FANet reduces the EERs from 33.75% to 19.23% under ROSE to IDIAP protocol by rejecting samples with the lowest 30% forensicability scores. The performance of FAS schemes is poor in the rejected samples, with EER as high as 56.48%. Similar performances in rejecting low-forensicability samples have been observed for the state-of-the-art approaches in FAS and recaptured document detection tasks. To the best of our knowledge, this is the first work that assesses the forensicability of recaptured document images and improves the system efficiency.
PDF 12 pages, 10 figures, 2 tables (Submitted to TIFS July-2022)

点此查看论文截图

Learning Meta Pattern for Face Anti-Spoofing

Authors:Rizhao Cai, Zhi Li, Renjie Wan, Haoliang Li, Yongjian Hu, Alex Chichung Kot

Face Anti-Spoofing (FAS) is essential to secure face recognition systems and has been extensively studied in recent years. Although deep neural networks (DNNs) for the FAS task have achieved promising results in intra-dataset experiments with similar distributions of training and testing data, the DNNs’ generalization ability is limited under the cross-domain scenarios with different distributions of training and testing data. To improve the generalization ability, recent hybrid methods have been explored to extract task-aware handcrafted features (e.g., Local Binary Pattern) as discriminative information for the input of DNNs. However, the handcrafted feature extraction relies on experts’ domain knowledge, and how to choose appropriate handcrafted features is underexplored. To this end, we propose a learnable network to extract Meta Pattern (MP) in our learning-to-learn framework. By replacing handcrafted features with the MP, the discriminative information from MP is capable of learning a more generalized model. Moreover, we devise a two-stream network to hierarchically fuse the input RGB image and the extracted MP by using our proposed Hierarchical Fusion Module (HFM). We conduct comprehensive experiments and show that our MP outperforms the compared handcrafted features. Also, our proposed method with HFM and the MP can achieve state-of-the-art performance on two different domain generalization evaluation benchmarks.
PDF Accepted by IEEE Transactions on Information Forensics and Security (https://ieeexplore.ieee.org.remotexs.ntu.edu.sg/document/9732458) Source code available in https://github.com/RizhaoCai/MetaPattern_FAS

点此查看论文截图

A Novel Face-Anti Spoofing Neural Network Model For Face Recognition And Detection

Authors:Soham S. Sarpotdar

Face Recognition (FR) systems are being used in a variety of applications, including road crossings, banking, and mobile banking. The widespread use of FR systems has raised concerns about the safety of face biometrics against spoofing attacks, which use the use of a photo or video of a legitimate user’s face to gain illegal access to the resources or activities. Despite the development of several FAS or liveness detection methods (which determine whether a face is live or spoofed at the time of acquisition), the problem remains unsolved due to the difficulty of identifying discrimination and operationally reasonably priced spoof characteristics but also approaches. Additionally, certain facial portions are frequently repeated or correlate to image clutter, resulting in poor performance overall. This research proposes a face-anti-spoofing neural network model that outperforms existing models and has an efficiency of 0.89 percent.
PDF 9 Pages

点此查看论文截图

Adaptive Mixture of Experts Learning for Generalizable Face Anti-Spoofing

Authors:Qianyu Zhou, Ke-Yue Zhang, Taiping Yao, Ran Yi, Shouhong Ding, Lizhuang Ma

With various face presentation attacks emerging continually, face anti-spoofing (FAS) approaches based on domain generalization (DG) have drawn growing attention. Existing DG-based FAS approaches always capture the domain-invariant features for generalizing on the various unseen domains. However, they neglect individual source domains’ discriminative characteristics and diverse domain-specific information of the unseen domains, and the trained model is not sufficient to be adapted to various unseen domains. To address this issue, we propose an Adaptive Mixture of Experts Learning (AMEL) framework, which exploits the domain-specific information to adaptively establish the link among the seen source domains and unseen target domains to further improve the generalization. Concretely, Domain-Specific Experts (DSE) are designed to investigate discriminative and unique domain-specific features as a complement to common domain-invariant features. Moreover, Dynamic Expert Aggregation (DEA) is proposed to adaptively aggregate the complementary information of each source expert based on the domain relevance to the unseen target domain. And combined with meta-learning, these modules work collaboratively to adaptively aggregate meaningful domain-specific information for the various unseen target domains. Extensive experiments and visualizations demonstrate the effectiveness of our method against the state-of-the-art competitors.
PDF Accepted to ACM MM 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录