Domain Adaptation


2022-11-29 更新

SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection

Authors:Huayi Zhou, Fei Jiang, Hongtao Lu

Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by outdated and computationally intensive two-stage Faster R-CNN, which is not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage stronger detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various real classrooms. The results show considerable improvements of our method in these DAOD tasks, which reveals both the effectiveness of proposed adaptive modules and the urgency of applying more advanced detectors in DAOD. Our code is available on \url{https://github.com/hnuzhy/SSDA-YOLO}.
PDF submitted to CVIU

点此查看论文截图

Towards Realistic Underwater Dataset Generation and Color Restoration

Authors:Neham Jain, Gopi Matta, Kaushik Mitra

Recovery of true color from underwater images is an ill-posed problem. This is because the wide-band attenuation coefficients for the RGB color channels depend on object range, reflectance, etc. which are difficult to model. Also, there is backscattering due to suspended particles in water. Thus, most existing deep-learning based color restoration methods, which are trained on synthetic underwater datasets, do not perform well on real underwater data. This can be attributed to the fact that synthetic data cannot accurately represent real conditions. To address this issue, we use an image to image translation network to bridge the gap between the synthetic and real domains by translating images from synthetic underwater domain to real underwater domain. Using this multimodal domain adaptation technique, we create a dataset that can capture a diverse array of underwater conditions. We then train a simple but effective CNN based network on our domain adapted dataset to perform color restoration. Code and pre-trained models can be accessed at https://github.com/nehamjain10/TRUDGCR
PDF

点此查看论文截图

1st Place Solution to NeurIPS 2022 Challenge on Visual Domain Adaptation

Authors:Daehan Kim, Minseok Seo, YoungJin Jeon, Dong-Geol Choi

The Visual Domain Adaptation(VisDA) 2022 Challenge calls for an unsupervised domain adaptive model in semantic segmentation tasks for industrial waste sorting. In this paper, we introduce the SIA_Adapt method, which incorporates several methods for domain adaptive models. The core of our method in the transferable representation from large-scale pre-training. In this process, we choose a network architecture that differs from the state-of-the-art for domain adaptation. After that, self-training using pseudo-labels helps to make the initial adaptation model more adaptable to the target domain. Finally, the model soup scheme helped to improve the generalization performance in the target domain. Our method SIA_Adapt achieves 1st place in the VisDA2022 challenge. The code is available on https: //github.com/DaehanKim-Korea/VisDA2022_Winner_Solution.
PDF This technical paper contains a brief overview of the proposed method, SIA_Adapt, which wins the Visual Domain Adaptation(VisDA) challenge

点此查看论文截图

Exploring Consistency in Cross-Domain Transformer for Domain Adaptive Semantic Segmentation

Authors:Kaihong Wang, Donghyun Kim, Regerio Feris, Kate Saenko, Margrit Betke

While transformers have greatly boosted performance in semantic segmentation, domain adaptive transformers are not yet well explored. We identify that the domain gap can cause discrepancies in self-attention. Due to this gap, the transformer attends to spurious regions or pixels, which deteriorates accuracy on the target domain. We propose to perform adaptation on attention maps with cross-domain attention layers that share features between the source and the target domains. Specifically, we impose consistency between predictions from cross-domain attention and self-attention modules to encourage similar distribution in the attention and output of the model across domains, i.e., attention-level and output-level alignment. We also enforce consistency in attention maps between different augmented views to further strengthen the attention-based alignment. Combining these two components, our method mitigates the discrepancy in attention maps across domains and further boosts the performance of the transformer under unsupervised domain adaptation settings. Our model outperforms the existing state-of-the-art baseline model on three widely used benchmarks, including GTAV-to-Cityscapes by 1.3 percent point (pp), Synthia-to-Cityscapes by 0.6 pp, and Cityscapes-to-ACDC by 1.1 pp, on average. Additionally, we verify the effectiveness and generalizability of our method through extensive experiments. Our code will be publicly available.
PDF

点此查看论文截图

BJTU-WeChat’s Systems for the WMT22 Chat Translation Task

Authors:Yunlong Liang, Fandong Meng, Jinan Xu, Yufeng Chen, Jie Zhou

This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT’22 chat translation task for English-German. Based on the Transformer, we apply several effective variants. In our experiments, we utilize the pre-training-then-fine-tuning paradigm. In the first pre-training stage, we employ data filtering and synthetic data generation (i.e., back-translation, forward-translation, and knowledge distillation). In the second fine-tuning stage, we investigate speaker-aware in-domain data generation, speaker adaptation, prompt-based context modeling, target denoising fine-tuning, and boosted self-COMET-based model ensemble. Our systems achieve 0.810 and 0.946 COMET scores. The COMET scores of English-German and German-English are the highest among all submissions.
PDF Accepted by WMT 2022 as a system paper

点此查看论文截图

Reducing Domain Gap in Frequency and Spatial domain for Cross-modality Domain Adaptation on Medical Image Segmentation

Authors:Shaolei Liu, Siqi Yin, Linhao Qu, Manning Wang

Unsupervised domain adaptation (UDA) aims to learn a model trained on source domain and performs well on unlabeled target domain. In medical image segmentation field, most existing UDA methods depend on adversarial learning to address the domain gap between different image modalities, which is ineffective due to its complicated training process. In this paper, we propose a simple yet effective UDA method based on frequency and spatial domain transfer uner multi-teacher distillation framework. In the frequency domain, we first introduce non-subsampled contourlet transform for identifying domain-invariant and domain-variant frequency components (DIFs and DVFs), and then keep the DIFs unchanged while replacing the DVFs of the source domain images with that of the target domain images to narrow the domain gap. In the spatial domain, we propose a batch momentum update-based histogram matching strategy to reduce the domain-variant image style bias. Experiments on two cross-modality medical image segmentation datasets (cardiac, abdominal) show that our proposed method achieves superior performance compared to state-of-the-art methods.
PDF accepted at Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

点此查看论文截图

Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All-in-One Classifier

Authors:Zelin Zang, Lei Shang, Senqiao Yang, Baigui Sun, Stan Z. Li

Unsupervised domain adaptation (UDA) has been highly successful in transferring knowledge acquired from a label-rich source domain to a label-scarce target domain. Open-set domain adaptation (ODA) and universal domain adaptation (UNDA) have been proposed as solutions to the problem concerning the presence of additional novel categories in the target domain. Existing ODA and UNDA approaches treat all novel categories as one unified unknown class and attempt to detect this unknown class during the training process. We find that domain variance leads to more significant view-noise in unsupervised data augmentation, affecting the further applications of contrastive learning~(CL), as well as the current closed-set classifier and open-set classifier causing the model to be overconfident in novel class discovery. To address the above two issues, we propose Soft-contrastive All-in-one Network~(SAN) for ODA and UNDA tasks. SAN includes a novel data-augmentation-based CL loss, which is used to improve the representational capability, and a more human-intuitive classifier, which is used to improve the new class discovery capability. The soft contrastive learning~(SCL) loss is used to weaken the adverse effects of the data-augmentation label noise problem, which is amplified in domain transfer. The All-in-One~(AIO) classifier overcomes the overconfidence problem of the current mainstream closed-set classifier and open-set classifier in a more human-intuitive way. The visualization results and ablation experiments demonstrate the importance of the two proposed innovations. Moreover, extensive experimental results on ODA and UNDA show that SAN has advantages over the existing state-of-the-art methods.
PDF The paper found additional problems

点此查看论文截图

Instance-level Heterogeneous Domain Adaptation for Limited-labeled Sketch-to-Photo Retrieval

Authors:Fan Yang, Yang Wu, Zheng Wang, Xiang Li, Sakriani Sakti, Satoshi Nakamura

Although sketch-to-photo retrieval has a wide range of applications, it is costly to obtain paired and rich-labeled ground truth. Differently, photo retrieval data is easier to acquire. Therefore, previous works pre-train their models on rich-labeled photo retrieval data (i.e., source domain) and then fine-tune them on the limited-labeled sketch-to-photo retrieval data (i.e., target domain). However, without co-training source and target data, source domain knowledge might be forgotten during the fine-tuning process, while simply co-training them may cause negative transfer due to domain gaps. Moreover, identity label spaces of source data and target data are generally disjoint and therefore conventional category-level Domain Adaptation (DA) is not directly applicable. To address these issues, we propose an Instance-level Heterogeneous Domain Adaptation (IHDA) framework. We apply the fine-tuning strategy for identity label learning, aiming to transfer the instance-level knowledge in an inductive transfer manner. Meanwhile, labeled attributes from the source data are selected to form a shared label space for source and target domains. Guided by shared attributes, DA is utilized to bridge cross-dataset domain gaps and heterogeneous domain gaps, which transfers instance-level knowledge in a transductive transfer manner. Experiments show that our method has set a new state of the art on three sketch-to-photo image retrieval benchmarks without extra annotations, which opens the door to train more effective models on limited-labeled heterogeneous image retrieval tasks. Related codes are available at \url{https://github.com/fandulu/IHDA.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录