2022-11-28 更新
Cross-Quality LFW: A Database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments
Authors:Martin Knoche, Stefan Hörmann, Gerhard Rigoll
Real-world face recognition applications often deal with suboptimal image quality or resolution due to different capturing conditions such as various subject-to-camera distances, poor camera settings, or motion blur. This characteristic has an unignorable effect on performance. Recent cross-resolution face recognition approaches used simple, arbitrary, and unrealistic down- and up-scaling techniques to measure robustness against real-world edge-cases in image quality. Thus, we propose a new standardized benchmark dataset and evaluation protocol derived from the famous Labeled Faces in the Wild (LFW). In contrast to previous derivatives, which focus on pose, age, similarity, and adversarial attacks, our Cross-Quality Labeled Faces in the Wild (XQLFW) maximizes the quality difference. It contains only more realistic synthetically degraded images when necessary. Our proposed dataset is then used to further investigate the influence of image quality on several state-of-the-art approaches. With XQLFW, we show that these models perform differently in cross-quality cases, and hence, the generalizing capability is not accurately predicted by their performance on LFW. Additionally, we report baseline accuracy with recent deep learning models explicitly trained for cross-resolution applications and evaluate the susceptibility to image quality. To encourage further research in cross-resolution face recognition and incite the assessment of image quality robustness, we publish the database and code for evaluation.
PDF 9 pages, 4 figures, 2 tables
点此查看论文截图
Susceptibility to Image Resolution in Face Recognition and Trainings Strategies
Authors:Martin Knoche, Stefan Hörmann, Gerhard Rigoll
Face recognition approaches often rely on equal image resolution for verifying faces on two images. However, in practical applications, those image resolutions are usually not in the same range due to different image capture mechanisms or sources. In this work, we first analyze the impact of image resolutions on face verification performance with a state-of-the-art face recognition model. For images synthetically reduced to $5\,\times\,5$ px resolution, the verification performance drops from $99.23\%$ increasingly down to almost $55\%$. Especially for cross-resolution image pairs (one high- and one low-resolution image), the verification accuracy decreases even further. We investigate this behavior more in-depth by looking at the feature distances for every 2-image test pair. To tackle this problem, we propose the following two methods: 1) Train a state-of-the-art face-recognition model straightforwardly with $50\%$ low-resolution images directly within each batch. 2) Train a siamese-network structure and add a cosine distance feature loss between high- and low-resolution features. Both methods show an improvement for cross-resolution scenarios and can increase the accuracy at very low resolution to approximately $70\%$. However, a disadvantage is that a specific model needs to be trained for every resolution pair. Thus, we extend the aforementioned methods by training them with multiple image resolutions at once. The performances for particular testing image resolutions are slightly worse, but the advantage is that this model can be applied to arbitrary resolution images and achieves an overall better performance ($97.72\%$ compared to $96.86\%$). Due to the lack of a benchmark for arbitrary resolution images for the cross-resolution and equal-resolution task, we propose an evaluation protocol for five well-known datasets, focusing on high, mid, and low-resolution images.
PDF 19 pages, 15 figures, 2 tables