Domain Adaptation


2022-11-25 更新

Fundamental Limits and Tradeoffs in Invariant Representation Learning

Authors:Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoffrey J. Gordon, Pradeep Ravikumar

A wide range of machine learning applications such as privacy-preserving learning, algorithmic fairness, and domain adaptation/generalization among others, involve learning invariant representations of the data that aim to achieve two competing goals: (a) maximize information or accuracy with respect to a target response, and (b) maximize invariance or independence with respect to a set of protected features (e.g., for fairness, privacy, etc). Despite their wide applicability, theoretical understanding of the optimal tradeoffs — with respect to accuracy, and invariance — achievable by invariant representations is still severely lacking. In this paper, we provide an information theoretic analysis of such tradeoffs under both classification and regression settings. More precisely, we provide a geometric characterization of the accuracy and invariance achievable by any representation of the data; we term this feasible region the information plane. We provide an inner bound for this feasible region for the classification case, and an exact characterization for the regression case, which allows us to either bound or exactly characterize the Pareto optimal frontier between accuracy and invariance. Although our contributions are mainly theoretical, a key practical application of our results is in certifying the potential sub-optimality of any given representation learning algorithm for either classification or regression tasks. Our results shed new light on the fundamental interplay between accuracy and invariance, and may be useful in guiding the design of future representation learning algorithms.
PDF JMLR camera-ready version

点此查看论文截图

Unsupervised Domain Adaptation GAN Inversion for Image Editing

Authors:Siyu Xing, Chen Gong, Hewei Guo, Xiao-Yu Zhang, Xinwen Hou, Yu Liu

Existing GAN inversion methods work brilliantly for high-quality image reconstruction and editing while struggling with finding the corresponding high-quality images for low-quality inputs. Therefore, recent works are directed toward leveraging the supervision of paired high-quality and low-quality images for inversion. However, these methods are infeasible in real-world scenarios and further hinder performance improvement. In this paper, we resolve this problem by introducing Unsupervised Domain Adaptation (UDA) into the Inversion process, namely UDA-Inversion, for both high-quality and low-quality image inversion and editing. Particularly, UDA-Inversion first regards the high-quality and low-quality images as the source domain and unlabeled target domain, respectively. Then, a discrepancy function is presented to measure the difference between two domains, after which we minimize the source error and the discrepancy between the distributions of two domains in the latent space to obtain accurate latent codes for low-quality images. Without direct supervision, constructive representations of high-quality images can be spontaneously learned and transformed into low-quality images based on unsupervised domain adaptation. Experimental results indicate that UDA-inversion is the first that achieves a comparable level of performance with supervised methods in low-quality images across multiple domain datasets. We hope this work provides a unique inspiration for latent embedding distributions in image process tasks.
PDF

点此查看论文截图

RoentGen: Vision-Language Foundation Model for Chest X-ray Generation

Authors:Pierre Chambon, Christian Bluethgen, Jean-Benoit Delbrouck, Rogier Van der Sluijs, Małgorzata Połacin, Juan Manuel Zambrano Chaves, Tanishq Mathew Abraham, Shivanshu Purohit, Curtis P. Langlotz, Akshay Chaudhari

Multimodal models trained on large natural image-text pair datasets have exhibited astounding abilities in generating high-quality images. Medical imaging data is fundamentally different to natural images, and the language used to succinctly capture relevant details in medical data uses a different, narrow but semantically rich, domain-specific vocabulary. Not surprisingly, multi-modal models trained on natural image-text pairs do not tend to generalize well to the medical domain. Developing generative imaging models faithfully representing medical concepts while providing compositional diversity could mitigate the existing paucity of high-quality, annotated medical imaging datasets. In this work, we develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays (CXR) and their corresponding radiology (text) reports. We investigate the model’s ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts. We assess the model outputs quantitatively using image quality metrics, and evaluate image quality and text-image alignment by human domain experts. We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images, and that the output can be controlled to a new extent by using free-form text prompts including radiology-specific language. Fine-tuning this model on a fixed training set and using it as a data augmentation method, we measure a 5% improvement of a classifier trained jointly on synthetic and real images, and a 3% improvement when trained on a larger but purely synthetic training set. Finally, we observe that this fine-tuning distills in-domain knowledge in the text-encoder and can improve its representation capabilities of certain diseases like pneumothorax by 25%.
PDF 19 pages

点此查看论文截图

Online Federated Learning via Non-Stationary Detection and Adaptation amidst Concept Drift

Authors:Bhargav Ganguly, Vaneet Aggarwal

Federated Learning (FL) is an emerging domain in the broader context of artificial intelligence research. Methodologies pertaining to FL assume distributed model training, consisting of a collection of clients and a server, with the main goal of achieving optimal global model with restrictions on data sharing due to privacy concerns. It is worth highlighting that the diverse existing literature in FL mostly assume stationary data generation processes; such an assumption is unrealistic in real-world conditions where concept drift occurs due to, for instance, seasonal or period observations, faults in sensor measurements. In this paper, we introduce a multiscale algorithmic framework which combines theoretical guarantees of \textit{FedAvg} and \textit{FedOMD} algorithms in near stationary settings with a non-stationary detection and adaptation technique to ameliorate FL generalization performance in the presence of model/concept drifts. We present a multi-scale algorithmic framework leading to $\Tilde{\mathcal{O}} ( \min { \sqrt{LT} , \Delta^{\frac{1}{3}}T^{\frac{2}{3}} + \sqrt{T} })$ \textit{dynamic regret} for $T$ rounds with an underlying general convex loss function, where $L$ is the number of times non-stationary drifts occured and $\Delta$ is the cumulative magnitude of drift experienced within $T$ rounds.
PDF

点此查看论文截图

Provably Uncertainty-Guided Universal Domain Adaptation

Authors:Yifan Wang, Lin Zhang, Ran Song, Lin Ma, Wei Zhang

Universal domain adaptation (UniDA) aims to transfer the knowledge of common classes from source domain to target domain without any prior knowledge on the label set, which requires to distinguish the unknown samples from the known ones in the target domain. Like the traditional unsupervised domain adaptation problem, the misalignment between two domains exists due to the biased and less-discriminative embedding in target domain. Recent methods proposed to complete the domain misalignment by clustering target samples with the nearest neighbors or nearest prototypes. However, it is dangerous to do so because both known and unknown samples may distribute on the edges of source clusters. Meanwhile, other existing classifier-based methods could easily produce overconfident predictions for unknown samples because the supervised objectives in source domain leads the whole model to be biased towards the common classes. Therefore, to deal with the first issue, we propose to exploit the distribution of target samples and introduce an empirical estimation of the probability of a target sample belong to the unknown class. Then, based on the estimation, we propose a novel unknown samples discovering method in the linear subspace with a $\delta$-filter to estimate the uncertainty of each target sample, which can fully exploit the relationship between the target sample and its neighbors. Moreover, for the second issue, this paper well balances the confidence values of both known and unknown samples through an uncertainty-guided margin loss. It enforces a margin to source samples to encourage a similar intra-class variance of source samples to that of unknown samples.
PDF 13 pages. arXiv admin note: text overlap with arXiv:2207.09280

点此查看论文截图

From Indoor To Outdoor: Unsupervised Domain Adaptive Gait Recognition

Authors:Likai Wang, Ruize Han, Wei Feng, Song Wang

Gait recognition is an important AI task, which has been progressed rapidly with the development of deep learning. However, existing learning based gait recognition methods mainly focus on the single domain, especially the constrained laboratory environment. In this paper, we study a new problem of unsupervised domain adaptive gait recognition (UDA-GR), that learns a gait identifier with supervised labels from the indoor scenes (source domain), and is applied to the outdoor wild scenes (target domain). For this purpose, we develop an uncertainty estimation and regularization based UDA-GR method. Specifically, we investigate the characteristic of gaits in the indoor and outdoor scenes, for estimating the gait sample uncertainty, which is used in the unsupervised fine-tuning on the target domain to alleviate the noises of the pseudo labels. We also establish a new benchmark for the proposed problem, experimental results on which show the effectiveness of the proposed method. We will release the benchmark and source code in this work to the public.
PDF

点此查看论文截图

FLAIR #1: semantic segmentation and domain adaptation dataset

Authors:Anatol Garioud, Stéphane Peillet, Eva Bookjans, Sébastien Giordano, Boris Wattrelos

The French National Institute of Geographical and Forest Information (IGN) has the mission to document and measure land-cover on French territory and provides referential geographical datasets, including high-resolution aerial images and topographic maps. The monitoring of land-cover plays a crucial role in land management and planning initiatives, which can have significant socio-economic and environmental impact. Together with remote sensing technologies, artificial intelligence (IA) promises to become a powerful tool in determining land-cover and its evolution. IGN is currently exploring the potential of IA in the production of high-resolution land cover maps. Notably, deep learning methods are employed to obtain a semantic segmentation of aerial images. However, territories as large as France imply heterogeneous contexts: variations in landscapes and image acquisition make it challenging to provide uniform, reliable and accurate results across all of France. The FLAIR-one dataset presented is part of the dataset currently used at IGN to establish the French national reference land cover map “Occupation du sol `a grande \’echelle” (OCS- GE).
PDF

点此查看论文截图

A Deep Reinforcement Learning Approach to Rare Event Estimation

Authors:Anthony Corso, Kyu-Young Kim, Shubh Gupta, Grace Gao, Mykel J. Kochenderfer

An important step in the design of autonomous systems is to evaluate the probability that a failure will occur. In safety-critical domains, the failure probability is extremely small so that the evaluation of a policy through Monte Carlo sampling is inefficient. Adaptive importance sampling approaches have been developed for rare event estimation but do not scale well to sequential systems with long horizons. In this work, we develop two adaptive importance sampling algorithms that can efficiently estimate the probability of rare events for sequential decision making systems. The basis for these algorithms is the minimization of the Kullback-Leibler divergence between a state-dependent proposal distribution and a target distribution over trajectories, but the resulting algorithms resemble policy gradient and value-based reinforcement learning. We apply multiple importance sampling to reduce the variance of our estimate and to address the issue of multi-modality in the optimal proposal distribution. We demonstrate our approach on a control task with both continuous and discrete actions spaces and show accuracy improvements over several baselines.
PDF

点此查看论文截图

Disentanglement by Cyclic Reconstruction

Authors:David Bertoin, Emmanuel Rachelson

Deep neural networks have demonstrated their ability to automatically extract meaningful features from data. However, in supervised learning, information specific to the dataset used for training, but irrelevant to the task at hand, may remain encoded in the extracted representations. This remaining information introduces a domain-specific bias, weakening the generalization performance. In this work, we propose splitting the information into a task-related representation and its complementary context representation. We propose an original method, combining adversarial feature predictors and cyclic reconstruction, to disentangle these two representations in the single-domain supervised case. We then adapt this method to the unsupervised domain adaptation problem, consisting of training a model capable of performing on both a source and a target domain. In particular, our method promotes disentanglement in the target domain, despite the absence of training labels. This enables the isolation of task-specific information from both domains and a projection into a common representation. The task-specific representation allows efficient transfer of knowledge acquired from the source domain to the target domain. In the single-domain case, we demonstrate the quality of our representations on information retrieval tasks and the generalization benefits induced by sharpened task-specific representations. We then validate the proposed method on several classical domain adaptation benchmarks and illustrate the benefits of disentanglement for domain adaptation.
PDF

点此查看论文截图

Information-Theoretic Analysis of Unsupervised Domain Adaptation

Authors:Ziqiao Wang, Yongyi Mao

This paper uses information-theoretic tools to analyze the generalization error in unsupervised domain adaptation (UDA). We present novel upper bounds for two notions of generalization errors. The first notion measures the gap between the population risk in the target domain and that in the source domain, and the second measures the gap between the population risk in the target domain and the empirical risk in the source domain. While our bounds for the first kind of error are in line with the traditional analysis and give similar insights, our bounds on the second kind of error are algorithm-dependent, which also provide insights into algorithm designs. Specifically, we present two simple techniques for improving generalization in UDA and validate them experimentally.
PDF

点此查看论文截图

2022-11-25 更新

MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge

Authors:Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An Huang, Yuke Zhu, Anima Anandkumar

Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo’s data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite, knowledge bases, algorithm implementation, and pretrained models (https://minedojo.org) to promote research towards the goal of generally capable embodied agents.
PDF Outstanding Paper Award at NeurIPS 2022. Project website: https://minedojo.org

点此查看论文截图

Pred&Guide: Labeled Target Class Prediction for Guiding Semi-Supervised Domain Adaptation

Authors:Megh Manoj Bhalerao, Anurag Singh, Soma Biswas

Semi-supervised domain adaptation aims to classify data belonging to a target domain by utilizing a related label-rich source domain and very few labeled examples of the target domain. Here, we propose a novel framework, Pred&Guide, which leverages the inconsistency between the predicted and the actual class labels of the few labeled target examples to effectively guide the domain adaptation in a semi-supervised setting. Pred&Guide consists of three stages, as follows (1) First, in order to treat all the target samples equally, we perform unsupervised domain adaptation coupled with self-training; (2) Second is the label prediction stage, where the current model is used to predict the labels of the few labeled target examples, and (3) Finally, the correctness of the label predictions are used to effectively weigh source examples class-wise to better guide the domain adaptation process. Extensive experiments show that the proposed Pred&Guide framework achieves state-of-the-art results for two large-scale benchmark datasets, namely Office-Home and DomainNet.
PDF

点此查看论文截图

Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection

Authors:Tianyu Wang, Xiaowei Hu, Zhengzhe Liu, Chi-Wing Fu

LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors. Yet, small, distant, and incomplete objects with sparse or few points are often hard to detect. We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space. Specifically, we first train a dense point 3D detector (DDet) with a dense point cloud as input and design a sparse point 3D detector (SDet) with a regular point cloud as input. Importantly, we formulate the lightweight plug-in S2D module and the point cloud reconstruction module in SDet to densify 3D features and train SDet to produce 3D features, following the dense 3D features in DDet. So, in inference, SDet can simulate dense 3D features from regular (sparse) point cloud inputs without requiring dense inputs. We evaluate our method on the large-scale Waymo Open Dataset and the Waymo Domain Adaptation Dataset, showing its high performance and efficiency over the state of the arts.
PDF Accepted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Code will be released on https://github.com/stevewongv/Sparse2Dense

点此查看论文截图

Anatomy-guided domain adaptation for 3D in-bed human pose estimation

Authors:Alexander Bigalke, Lasse Hansen, Jasper Diesel, Carlotta Hennigs, Philipp Rostalski, Mattias P. Heinrich

3D human pose estimation is a key component of clinical monitoring systems. The clinical applicability of deep pose estimation models, however, is limited by their poor generalization under domain shifts along with their need for sufficient labeled training data. As a remedy, we present a novel domain adaptation method, adapting a model from a labeled source to a shifted unlabeled target domain. Our method comprises two complementary adaptation strategies based on prior knowledge about human anatomy. First, we guide the learning process in the target domain by constraining predictions to the space of anatomically plausible poses. To this end, we embed the prior knowledge into an anatomical loss function that penalizes asymmetric limb lengths, implausible bone lengths, and implausible joint angles. Second, we propose to filter pseudo labels for self-training according to their anatomical plausibility and incorporate the concept into the Mean Teacher paradigm. We unify both strategies in a point cloud-based framework applicable to unsupervised and source-free domain adaptation. Evaluation is performed for in-bed pose estimation under two adaptation scenarios, using the public SLP dataset and a newly created dataset. Our method consistently outperforms various state-of-the-art domain adaptation methods, surpasses the baseline model by 31%/66%, and reduces the domain gap by 65%/82%. Source code is available at https://github.com/multimodallearning/da-3dhpe-anatomy.
PDF submitted to Medical Image Analysis

点此查看论文截图

VBLC: Visibility Boosting and Logit-Constraint Learning for Domain Adaptive Semantic Segmentation under Adverse Conditions

Authors:Mingjia Li, Binhui Xie, Shuang Li, Chi Harold Liu, Xinjing Cheng

Generalizing models trained on normal visual conditions to target domains under adverse conditions is demanding in the practical systems. One prevalent solution is to bridge the domain gap between clear- and adverse-condition images to make satisfactory prediction on the target. However, previous methods often reckon on additional reference images of the same scenes taken from normal conditions, which are quite tough to collect in reality. Furthermore, most of them mainly focus on individual adverse condition such as nighttime or foggy, weakening the model versatility when encountering other adverse weathers. To overcome the above limitations, we propose a novel framework, Visibility Boosting and Logit-Constraint learning (VBLC), tailored for superior normal-to-adverse adaptation. VBLC explores the potential of getting rid of reference images and resolving the mixture of adverse conditions simultaneously. In detail, we first propose the visibility boost module to dynamically improve target images via certain priors in the image level. Then, we figure out the overconfident drawback in the conventional cross-entropy loss for self-training method and devise the logit-constraint learning, which enforces a constraint on logit outputs during training to mitigate this pain point. To the best of our knowledge, this is a new perspective for tackling such a challenging task. Extensive experiments on two normal-to-adverse domain adaptation benchmarks, i.e., Cityscapes -> ACDC and Cityscapes -> FoggyCityscapes + RainCityscapes, verify the effectiveness of VBLC, where it establishes the new state of the art. Code is available at https://github.com/BIT-DA/VBLC.
PDF Camera ready for AAAI 2023. Code is available at https://github.com/BIT-DA/VBLC

点此查看论文截图

Test-Time Adaptation via Conjugate Pseudo-labels

Authors:Sachin Goyal, Mingjie Sun, Aditi Raghunathan, Zico Kolter

Test-time adaptation (TTA) refers to adapting neural networks to distribution shifts, with access to only the unlabeled test samples from the new domain at test-time. Prior TTA methods optimize over unsupervised objectives such as the entropy of model predictions in TENT [Wang et al., 2021], but it is unclear what exactly makes a good TTA loss. In this paper, we start by presenting a surprising phenomenon: if we attempt to meta-learn the best possible TTA loss over a wide class of functions, then we recover a function that is remarkably similar to (a temperature-scaled version of) the softmax-entropy employed by TENT. This only holds, however, if the classifier we are adapting is trained via cross-entropy; if trained via squared loss, a different best TTA loss emerges. To explain this phenomenon, we analyze TTA through the lens of the training losses’s convex conjugate. We show that under natural conditions, this (unsupervised) conjugate function can be viewed as a good local approximation to the original supervised loss and indeed, it recovers the best losses found by meta-learning. This leads to a generic recipe that can be used to find a good TTA loss for any given supervised training loss function of a general class. Empirically, our approach consistently dominates other baselines over a wide range of benchmarks. Our approach is particularly of interest when applied to classifiers trained with novel loss functions, e.g., the recently-proposed PolyLoss, where it differs substantially from (and outperforms) an entropy-based loss. Further, we show that our approach can also be interpreted as a kind of self-training using a very specific soft label, which we refer to as the conjugate pseudolabel. Overall, our method provides a broad framework for better understanding and improving test-time adaptation. Code is available at https://github.com/locuslab/tta_conjugate.
PDF Published in Neural Information Processing Systems (NeurIPS) 2022

点此查看论文截图

Robust Mean Teacher for Continual and Gradual Test-Time Adaptation

Authors:Mario Döbler, Robert A. Marsden, Bin Yang

Since experiencing domain shifts during test-time is inevitable in practice, test-time adaption (TTA) continues to adapt the model during deployment. Recently, the area of continual and gradual test-time adaptation (TTA) emerged. In contrast to standard TTA, continual TTA considers not only a single domain shift, but a sequence of shifts. Gradual TTA further exploits the property that some shifts evolve gradually over time. Since in both settings long test sequences are present, error accumulation needs to be addressed for methods relying on self-training. In this work, we propose and show that in the setting of TTA, the symmetric cross-entropy is better suited as a consistency loss for mean teachers compared to the commonly used cross-entropy. This is justified by our analysis with respect to the (symmetric) cross-entropy’s gradient properties. To pull the test feature space closer to the source domain, where the pre-trained model is well posed, contrastive learning is leveraged. Since applications differ in their requirements, we address different settings, namely having source data available and the more challenging source-free setting. We demonstrate the effectiveness of our proposed method ‘robust mean teacher’ (RMT) on the continual and gradual corruption benchmarks CIFAR10C, CIFAR100C, and Imagenet-C. We further consider ImageNet-R and propose a new continual DomainNet-126 benchmark. State-of-the-art results are achieved on all benchmarks.
PDF

点此查看论文截图

Novel transfer learning schemes based on Siamese networks and synthetic data

Authors:Dominik Stallmann, Philip Kenneweg, Barbara Hammer

Transfer learning schemes based on deep networks which have been trained on huge image corpora offer state-of-the-art technologies in computer vision. Here, supervised and semi-supervised approaches constitute efficient technologies which work well with comparably small data sets. Yet, such applications are currently restricted to application domains where suitable deepnetwork models are readily available. In this contribution, we address an important application area in the domain of biotechnology, the automatic analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation, where data characteristics are very dissimilar to existing domains and trained deep networks cannot easily be adapted by classical transfer learning. We propose a novel transfer learning scheme which expands a recently introduced Twin-VAE architecture, which is trained on realistic and synthetic data, and we modify its specialized training procedure to the transfer learning domain. In the specific domain, often only few to no labels exist and annotations are costly. We investigate a novel transfer learning strategy, which incorporates a simultaneous retraining on natural and synthetic data using an invariant shared representation as well as suitable target variables, while it learns to handle unseen data from a different microscopy tech nology. We show the superiority of the variation of our Twin-VAE architecture over the state-of-the-art transfer learning methodology in image processing as well as classical image processing technologies, which persists, even with strongly shortened training times and leads to satisfactory results in this domain. The source code is available at https://github.com/dstallmann/transfer_learning_twinvae, works cross-platform, is open-source and free (MIT licensed) software. We make the data sets available at https://pub.uni-bielefeld.de/record/2960030.
PDF

点此查看论文截图

Evaluating COVID-19 Sequence Data Using Nearest-Neighbors Based Network Model

Authors:Sarwan Ali

The SARS-CoV-2 coronavirus is the cause of the COVID-19 disease in humans. Like many coronaviruses, it can adapt to different hosts and evolve into different lineages. It is well-known that the major SARS-CoV-2 lineages are characterized by mutations that happen predominantly in the spike protein. Understanding the spike protein structure and how it can be perturbed is vital for understanding and determining if a lineage is of concern. These are crucial to identifying and controlling current outbreaks and preventing future pandemics. Machine learning (ML) methods are a viable solution to this effort, given the volume of available sequencing data, much of which is unaligned or even unassembled. However, such ML methods require fixed-length numerical feature vectors in Euclidean space to be applicable. Similarly, euclidean space is not considered the best choice when working with the classification and clustering tasks for biological sequences. For this purpose, we design a method that converts the protein (spike) sequences into the sequence similarity network (SSN). We can then use SSN as an input for the classical algorithms from the graph mining domain for the typical tasks such as classification and clustering to understand the data. We show that the proposed alignment-free method is able to outperform the current SOTA method in terms of clustering results. Similarly, we are able to achieve higher classification accuracy using well-known Node2Vec-based embedding compared to other baseline embedding approaches.
PDF Accepted at IEEE BigData 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录