无监督/半监督/对比学习


2022-11-22 更新

CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion

Authors:Jinyuan Liu, Runjia Lin, Guanyao Wu, Risheng Liu, Zhongxuan Luo, Xin Fan

Infrared and visible image fusion targets to provide an informative image by combining complementary information from different sensors. Existing learning-based fusion approaches attempt to construct various loss functions to preserve complementary features from both modalities, while neglecting to discover the inter-relationship between the two modalities, leading to redundant or even invalid information on the fusion results. To alleviate these issues, we propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion in an end-to-end manner. Concretely, to simultaneously retain typical features from both modalities and remove unwanted information emerging on the fused result, we develop a coupled contrastive constraint in our loss function.In a fused imge, its foreground target/background detail part is pulled close to the infrared/visible source and pushed far away from the visible/infrared source in the representation space. We further exploit image characteristics to provide data-sensitive weights, which allows our loss function to build a more reliable relationship with source images. Furthermore, to learn rich hierarchical feature representation and comprehensively transfer features in the fusion process, a multi-level attention module is established. In addition, we also apply the proposed CoCoNet on medical image fusion of different types, e.g., magnetic resonance image and positron emission tomography image, magnetic resonance image and single photon emission computed tomography image. Extensive experiments demonstrate that our method achieves the state-of-the-art (SOTA) performance under both subjective and objective evaluation, especially in preserving prominent targets and recovering vital textural details.
PDF 25 pages, 16 figures

点此查看论文截图

Contrastive Self-Supervised Learning Leads to Higher Adversarial Susceptibility

Authors:Rohit Gupta, Naveed Akhtar, Ajmal Mian, Mubarak Shah

Contrastive self-supervised learning (CSL) has managed to match or surpass the performance of supervised learning in image and video classification. However, it is still largely unknown if the nature of the representations induced by the two learning paradigms is similar. We investigate this under the lens of adversarial robustness. Our analysis of the problem reveals that CSL has intrinsically higher sensitivity to perturbations over supervised learning. We identify the uniform distribution of data representation over a unit hypersphere in the CSL representation space as the key contributor to this phenomenon. We establish that this is a result of the presence of false negative pairs in the training process, which increases model sensitivity to input perturbations. Our finding is supported by extensive experiments for image and video classification using adversarial perturbations and other input corruptions. We devise a strategy to detect and remove false negative pairs that is simple, yet effective in improving model robustness with CSL training. We close up to 68% of the robustness gap between CSL and its supervised counterpart. Finally, we contribute to adversarial learning by incorporating our method in CSL. We demonstrate an average gain of about 5% over two different state-of-the-art methods in this domain.
PDF 8 pages, 3 figures, to appear at AAAI-2023

点此查看论文截图

Cross-Modal Contrastive Learning for Robust Reasoning in VQA

Authors:Qi Zheng, Chaoyue Wang, Daqing Liu, Dadong Wang, Dacheng Tao

Multi-modal reasoning in visual question answering (VQA) has witnessed rapid progress recently. However, most reasoning models heavily rely on shortcuts learned from training data, which prevents their usage in challenging real-world scenarios. In this paper, we propose a simple but effective cross-modal contrastive learning strategy to get rid of the shortcut reasoning caused by imbalanced annotations and improve the overall performance. Different from existing contrastive learning with complex negative categories on coarse (Image, Question, Answer) triplet level, we leverage the correspondences between the language and image modalities to perform finer-grained cross-modal contrastive learning. We treat each Question-Answer (QA) pair as a whole, and differentiate between images that conform with it and those against it. To alleviate the issue of sampling bias, we further build connected graphs among images. For each positive pair, we regard the images from different graphs as negative samples and deduct the version of multi-positive contrastive learning. To our best knowledge, it is the first paper that reveals a general contrastive learning strategy without delicate hand-craft rules can contribute to robust VQA reasoning. Experiments on several mainstream VQA datasets demonstrate our superiority compared to the state of the arts. Code is available at \url{https://github.com/qizhust/cmcl_vqa_pl}.
PDF

点此查看论文截图

Auto-Focus Contrastive Learning for Image Manipulation Detection

Authors:Wenyan Pan, Zhili Zhou, Guangcan Liu, Teng Huang, Hongyang Yan, Q. M. Jonathan Wu

Generally, current image manipulation detection models are simply built on manipulation traces. However, we argue that those models achieve sub-optimal detection performance as it tends to: 1) distinguish the manipulation traces from a lot of noisy information within the entire image, and 2) ignore the trace relations among the pixels of each manipulated region and its surroundings. To overcome these limitations, we propose an Auto-Focus Contrastive Learning (AF-CL) network for image manipulation detection. It contains two main ideas, i.e., multi-scale view generation (MSVG) and trace relation modeling (TRM). Specifically, MSVG aims to generate a pair of views, each of which contains the manipulated region and its surroundings at a different scale, while TRM plays a role in modeling the trace relations among the pixels of each manipulated region and its surroundings for learning the discriminative representation. After learning the AF-CL network by minimizing the distance between the representations of corresponding views, the learned network is able to automatically focus on the manipulated region and its surroundings and sufficiently explore their trace relations for accurate manipulation detection. Extensive experiments demonstrate that, compared to the state-of-the-arts, AF-CL provides significant performance improvements, i.e., up to 2.5%, 7.5%, and 0.8% F1 score, on CAISA, NIST, and Coverage datasets, respectively.
PDF

点此查看论文截图

DreamArtist: Towards Controllable One-Shot Text-to-Image Generation via Contrastive Prompt-Tuning

Authors:Ziyi Dong, Pengxu Wei, Liang Lin

Large-scale text-to-image generation models with an exponential evolution can currently synthesize high-resolution, feature-rich, high-quality images based on text guidance. However, they are often overwhelmed by words of new concepts, styles, or object entities that always emerge. Although there are some recent attempts to use fine-tuning or prompt-tuning methods to teach the model a new concept as a new pseudo-word from a given reference image set, these methods are not only still difficult to synthesize diverse and high-quality images without distortion and artifacts, but also suffer from low controllability. To address these problems, we propose a DreamArtist method that employs a learning strategy of contrastive prompt-tuning, which introduces both positive and negative embeddings as pseudo-words and trains them jointly. The positive embedding aggressively learns characteristics in the reference image to drive the model diversified generation, while the negative embedding introspects in a self-supervised manner to rectify the mistakes and inadequacies from positive embedding in reverse. It learns not only what is correct but also what should be avoided. Extensive experiments on image quality and diversity analysis, controllability analysis, model learning analysis and task expansion have demonstrated that our model learns not only concept but also form, content and context. Pseudo-words of DreamArtist have similar properties as true words to generate high-quality images.
PDF

点此查看论文截图

Local Contrastive Feature learning for Tabular Data

Authors:Zhabiz Gharibshah, Xingquan Zhu

Contrastive self-supervised learning has been successfully used in many domains, such as images, texts, graphs, etc., to learn features without requiring label information. In this paper, we propose a new local contrastive feature learning (LoCL) framework, and our theme is to learn local patterns/features from tabular data. In order to create a niche for local learning, we use feature correlations to create a maximum-spanning tree, and break the tree into feature subsets, with strongly correlated features being assigned next to each other. Convolutional learning of the features is used to learn latent feature space, regulated by contrastive and reconstruction losses. Experiments on public tabular datasets show the effectiveness of the proposed method versus state-of-the-art baseline methods.
PDF

点此查看论文截图

Deep Clustering by Semantic Contrastive Learning

Authors:Jiabo Huang, Shaogang Gong

Whilst contrastive learning has recently brought notable benefits to deep clustering of unlabelled images by learning sample-specific discriminative visual features, its potential for explicitly inferring class decision boundaries is less well understood. This is because its instance discrimination strategy is not class sensitive, therefore, the clusters derived on the resulting sample-specific feature space are not optimised for corresponding to meaningful class decision boundaries. In this work, we solve this problem by introducing Semantic Contrastive Learning (SCL). SCL imposes explicitly distance-based cluster structures on unlabelled training data by formulating a semantic (cluster-aware) contrastive learning objective. Moreover, we introduce a clustering consistency condition to be satisfied jointly by both instance visual similarities and cluster decision boundaries, and concurrently optimising both to reason about the hypotheses of semantic ground-truth classes (unknown/unlabelled) on-the-fly by their consensus. This semantic contrastive learning approach to discovering unknown class decision boundaries has considerable advantages to unsupervised learning of object recognition tasks. Extensive experiments show that SCL outperforms state-of-the-art contrastive learning and deep clustering methods on six object recognition benchmarks, especially on the more challenging finer-grained and larger datasets.
PDF

点此查看论文截图

SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for Exposing Deepfakes

Authors:Nicolas Larue, Ngoc-Son Vu, Vitomir Struc, Peter Peer, Vassilis Christophides

Modern deepfake detectors have achieved encouraging results, when training and test images are drawn from the same collection. However, when applying these detectors to faces manipulated using an unknown technique, considerable performance drops are typically observed. In this work, we propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task and generalizes better to unseen deepfakes. Specifically, SeeABLE uses a novel data augmentation strategy to synthesize fine-grained local image anomalies (referred to as soft-discrepancies) and pushes those pristine disrupted faces towards predefined prototypes using a novel regression-based bounded contrastive loss. To strengthen the generalization performance of SeeABLE to unknown deepfake types, we generate a rich set of soft discrepancies and train the detector: (i) to localize, which part of the face was modified, and (ii) to identify the alteration type. Using extensive experiments on widely used datasets, SeeABLE considerably outperforms existing detectors, with gains of up to +10\% on the DFDC-preview dataset in term of detection accuracy over SoTA methods while using a simpler model. Code will be made publicly available.
PDF

点此查看论文截图

CLAMP: Prompt-based Contrastive Learning for Connecting Language and Animal Pose

Authors:Xu Zhang, Wen Wang, Zhe Chen, Yufei Xu, Jing Zhang, Dacheng Tao

Animal pose estimation is challenging for existing image-based methods because of limited training data and large intra- and inter-species variances. Motivated by the progress of visual-language research, we propose that pre-trained language models (e.g., CLIP) can facilitate animal pose estimation by providing rich prior knowledge for describing animal keypoints in text. However, we found that building effective connections between pre-trained language models and visual animal keypoints is non-trivial since the gap between text-based descriptions and keypoint-based visual features about animal pose can be significant. To address this issue, we introduce a novel prompt-based Contrastive learning scheme for connecting Language and AniMal Pose (CLAMP) effectively. The CLAMP attempts to bridge the gap by adapting the text prompts to the animal keypoints during network training. The adaptation is decomposed into spatial-aware and feature-aware processes, and two novel contrastive losses are devised correspondingly. In practice, the CLAMP enables a new cross-modal animal pose estimation paradigm. Experimental results show that our method achieves state-of-the-art performance under the supervised, few-shot, and zero-shot settings, outperforming image-based methods by a large margin. The source code will be made publicly available.
PDF

点此查看论文截图

Constraining Multi-scale Pairwise Features between Encoder and Decoder Using Contrastive Learning for Unpaired Image-to-Image Translation

Authors:Xiuding Cai, Yaoyao Zhu, Dong Miao, Linjie Fu, Yu Yao

Contrastive learning (CL) has shown great potential in image-to-image translation (I2I). Current CL-based I2I methods usually re-exploit the encoder of the generator to maximize the mutual information between the input and generated images, which does not exert an active effect on the decoder part. In addition, though negative samples play a crucial role in CL, most existing methods adopt a random sampling strategy, which may be less effective. In this paper, we rethink the CL paradigm in the unpaired I2I tasks from two perspectives and propose a new one-sided image translation framework called EnCo. First, we present an explicit constraint on the multi-scale pairwise features between the encoder and decoder of the generator to guarantee the semantic consistency of the input and generated images. Second, we propose a discriminative attention-guided negative sampling strategy to replace the random negative sampling, which significantly improves the performance of the generative model with an almost negligible computational overhead. Compared with existing methods, EnCo acts more effective and efficient. Extensive experiments on several popular I2I datasets demonstrate the effectiveness and advantages of our proposed approach, and we achieve several state-of-the-art compared to previous methods.
PDF 16 pages, 10 figures

点此查看论文截图

Diffusion-Based Scene Graph to Image Generation with Masked Contrastive Pre-Training

Authors:Ling Yang, Zhilin Huang, Yang Song, Shenda Hong, Guohao Li, Wentao Zhang, Bin Cui, Bernard Ghanem, Ming-Hsuan Yang

Generating images from graph-structured inputs, such as scene graphs, is uniquely challenging due to the difficulty of aligning nodes and connections in graphs with objects and their relations in images. Most existing methods address this challenge by using scene layouts, which are image-like representations of scene graphs designed to capture the coarse structures of scene images. Because scene layouts are manually crafted, the alignment with images may not be fully optimized, causing suboptimal compliance between the generated images and the original scene graphs. To tackle this issue, we propose to learn scene graph embeddings by directly optimizing their alignment with images. Specifically, we pre-train an encoder to extract both global and local information from scene graphs that are predictive of the corresponding images, relying on two loss functions: masked autoencoding loss and contrastive loss. The former trains embeddings by reconstructing randomly masked image regions, while the latter trains embeddings to discriminate between compliant and non-compliant images according to the scene graph. Given these embeddings, we build a latent diffusion model to generate images from scene graphs. The resulting method, called SGDiff, allows for the semantic manipulation of generated images by modifying scene graph nodes and connections. On the Visual Genome and COCO-Stuff datasets, we demonstrate that SGDiff outperforms state-of-the-art methods, as measured by both the Inception Score and Fr\’echet Inception Distance (FID) metrics. We will release our source code and trained models at https://github.com/YangLing0818/SGDiff.
PDF Code and models shall be released at https://github.com/YangLing0818/SGDiff

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录