无监督/半监督/对比学习


2022-11-21 更新

Contrastive Losses Are Natural Criteria for Unsupervised Video Summarization

Authors:Zongshang Pang, Yuta Nakashima, Mayu Otani, Hajime Nagahara

Video summarization aims to select the most informative subset of frames in a video to facilitate efficient video browsing. Unsupervised methods usually rely on heuristic training objectives such as diversity and representativeness. However, such methods need to bootstrap the online-generated summaries to compute the objectives for importance score regression. We consider such a pipeline inefficient and seek to directly quantify the frame-level importance with the help of contrastive losses in the representation learning literature. Leveraging the contrastive losses, we propose three metrics featuring a desirable key frame: local dissimilarity, global consistency, and uniqueness. With features pre-trained on the image classification task, the metrics can already yield high-quality importance scores, demonstrating competitive or better performance than past heavily-trained methods. We show that by refining the pre-trained features with a lightweight contrastively learned projection module, the frame-level importance scores can be further improved, and the model can also leverage a large number of random videos and generalize to test videos with decent performance. Code available at https://github.com/pangzss/pytorch-CTVSUM.
PDF To appear in WACV2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录