Diffusion Models


2022-11-19 更新

Efficient Spatially Sparse Inference for Conditional GANs and Diffusion Models

Authors:Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, Jun-Yan Zhu

During image editing, existing deep generative models tend to re-synthesize the entire output from scratch, including the unedited regions. This leads to a significant waste of computation, especially for minor editing operations. In this work, we present Spatially Sparse Inference (SSI), a general-purpose technique that selectively performs computation for edited regions and accelerates various generative models, including both conditional GANs and diffusion models. Our key observation is that users tend to make gradual changes to the input image. This motivates us to cache and reuse the feature maps of the original image. Given an edited image, we sparsely apply the convolutional filters to the edited regions while reusing the cached features for the unedited regions. Based on our algorithm, we further propose Sparse Incremental Generative Engine (SIGE) to convert the computation reduction to latency reduction on off-the-shelf hardware. With 1.2%-area edited regions, our method reduces the computation of DDIM by 7.5$\times$ and GauGAN by 18$\times$ while preserving the visual fidelity. With SIGE, we accelerate the speed of DDIM by 3.0x on RTX 3090 and 6.6$\times$ on Apple M1 Pro CPU, and GauGAN by 4.2$\times$ on RTX 3090 and 14$\times$ on Apple M1 Pro CPU.
PDF NeurIPS 2022 Website: https://www.cs.cmu.edu/~sige/ Code: https://github.com/lmxyy/sige

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录