2022-11-15 更新
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Authors:Tycho F. A. van der Ouderaa, David W. Romero, Mark van der Wilk
Equivariances provide useful inductive biases in neural network modeling, with the translation equivariance of convolutional neural networks being a canonical example. Equivariances can be embedded in architectures through weight-sharing and place symmetry constraints on the functions a neural network can represent. The type of symmetry is typically fixed and has to be chosen in advance. Although some tasks are inherently equivariant, many tasks do not strictly follow such symmetries. In such cases, equivariance constraints can be overly restrictive. In this work, we propose a parameter-efficient relaxation of equivariance that can effectively interpolate between a (i) non-equivariant linear product, (ii) a strict-equivariant convolution, and (iii) a strictly-invariant mapping. The proposed parameterisation can be thought of as a building block to allow adjustable symmetry structure in neural networks. In addition, we demonstrate that the amount of equivariance can be learned from the training data using backpropagation. Gradient-based learning of equivariance achieves similar or improved performance compared to the best value found by cross-validation and outperforms baselines with partial or strict equivariance on CIFAR-10 and CIFAR-100 image classification tasks.
PDF
点此查看论文截图
Res6D: Projective Residual Regression for 6D Pose Estimation
Authors:Jianqiu Chen, Mingshan Sun, Ye Zheng, Tianpeng Bao, Zhenyu He, Donghai Li, Guoqiang Jin, Rui Zhao, Liwei Wu, Xiaoke Jiang
In RGB-D based 6D pose estimation, direct regression approaches can directly predict the 3D rotation and translation from RGB-D data, allowing for quick deployment and efficient inference. However, directly regressing the absolute translation of the pose suffers from diverse object translation distribution between the training and testing datasets, which is usually caused by the diversity of pose distribution of objects in 3D physical space. To this end, we generalize the pin-hole camera projection model to a residual-based projection model and propose the projective residual regression (Res6D) mechanism. Given a reference point for each object in an RGB-D image, Res6D not only reduces the distribution gap and shrinks the regression target to a small range by regressing the residual between the target and the reference point, but also aligns its output residual and its input to follow the projection equation between the 2D plane and 3D space. By plugging Res6D into the latest direct regression methods, we achieve state-of-the-art overall results on datasets including Occlusion LineMOD (ADD(S): 79.7%), LineMOD (ADD(S): 99.5%), and YCB-Video datasets (AUC of ADD(S): 95.4%).
PDF
点此查看论文截图
Robustness Certification of Visual Perception Models via Camera Motion Smoothing
Authors:Hanjiang Hu, Zuxin Liu, Linyi Li, Jiacheng Zhu, Ding Zhao
A vast literature shows that the learning-based visual perception model is sensitive to adversarial noises, but few works consider the robustness of robotic perception models under widely-existing camera motion perturbations. To this end, we study the robustness of the visual perception model under camera motion perturbations to investigate the influence of camera motion on robotic perception. Specifically, we propose a motion smoothing technique for arbitrary image classification models, whose robustness under camera motion perturbations could be certified. The proposed robustness certification framework based on camera motion smoothing provides tight and scalable robustness guarantees for visual perception modules so that they are applicable to wide robotic applications. As far as we are aware, this is the first work to provide robustness certification for the deep perception module against camera motions, which improves the trustworthiness of robotic perception. A realistic indoor robotic dataset with a dense point cloud map for the entire room, MetaRoom, is introduced for the challenging certifiable robust perception task. We conduct extensive experiments to validate the certification approach via motion smoothing against camera motion perturbations. Our framework guarantees the certified accuracy of 81.7% against camera translation perturbation along depth direction within -0.1m ~ 0.1m. We also validate the effectiveness of our method on the real-world robot by conducting hardware experiments on the robotic arm with an eye-in-hand camera. The code is available at https://github.com/HanjiangHu/camera-motion-smoothing.
PDF CoRL 2022 camera-ready version, 21 pages, 7 figures, 8 tables