Domain Adaptation


2022-11-15 更新

AdaptKeyBERT: An Attention-Based approach towards Few-Shot \& Zero-Shot Domain Adaptation of KeyBERT

Authors:Aman Priyanshu, Supriti Vijay

Keyword extraction has been an important topic for modern natural language processing. With its applications ranging from ontology generation, fact verification in summarized text, and recommendation systems. While it has had significant data-intensive applications, it is often hampered when the data set is small. Downstream training for keyword extractors is a lengthy process and requires a significant amount of data. Recently, Few-shot Learning (FSL) and Zero-Shot Learning (ZSL) have been proposed to tackle this problem. Therefore, we propose AdaptKeyBERT, a pipeline for training keyword extractors with LLM bases by incorporating the concept of regularized attention into a pre-training phase for downstream domain adaptation. As we believe our work has implications to be utilized in the pipeline of FSL/ZSL and keyword extraction, we open-source our code as well as provide the fine-tuning library of the same name AdaptKeyBERT at \url{https://github.com/AmanPriyanshu/AdaptKeyBERT}.
PDF

点此查看论文截图

Adversarial and Random Transformations for Robust Domain Adaptation and Generalization

Authors:Liang Xiao, Jiaolong Xu, Dawei Zhao, Erke Shang, Qi Zhu, Bin Dai

Data augmentation has been widely used to improve generalization in training deep neural networks. Recent works show that using worst-case transformations or adversarial augmentation strategies can significantly improve the accuracy and robustness. However, due to the non-differentiable properties of image transformations, searching algorithms such as reinforcement learning or evolution strategy have to be applied, which are not computationally practical for large scale problems. In this work, we show that by simply applying consistency training with random data augmentation, state-of-the-art results on domain adaptation (DA) and generalization (DG) can be obtained. To further improve the accuracy and robustness with adversarial examples, we propose a differentiable adversarial data augmentation method based on spatial transformer networks (STN). The combined adversarial and random transformations based method outperforms the state-of-the-art on multiple DA and DG benchmark datasets. Besides, the proposed method shows desirable robustness to corruption, which is also validated on commonly used datasets.
PDF

点此查看论文截图

Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction

Authors:Wenlin Chen, Austin Tripp, José Miguel Hernández-Lobato

We propose Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT), a novel framework for learning deep kernel Gaussian processes (GPs) by interpolating between meta-learning and conventional deep kernel learning. Our approach employs a bilevel optimization objective where we meta-learn generally useful feature representations across tasks, in the sense that task-specific GP models estimated on top of such features achieve the lowest possible predictive loss on average. We solve the resulting nested optimization problem using the implicit function theorem (IFT). We show that our ADKF-IFT framework contains previously proposed Deep Kernel Learning (DKL) and Deep Kernel Transfer (DKT) as special cases. Although ADKF-IFT is a completely general method, we argue that it is especially well-suited for drug discovery problems and demonstrate that it significantly outperforms previous state-of-the-art methods on a variety of real-world few-shot molecular property prediction tasks and out-of-domain molecular property prediction and optimization tasks.
PDF 24 pages, 7 figures, 7 tables, 1 algorithm

点此查看论文截图

Algorithms and Theory for Supervised Gradual Domain Adaptation

Authors:Jing Dong, Shiji Zhou, Baoxiang Wang, Han Zhao

The phenomenon of data distribution evolving over time has been observed in a range of applications, calling the needs of adaptive learning algorithms. We thus study the problem of supervised gradual domain adaptation, where labeled data from shifting distributions are available to the learner along the trajectory, and we aim to learn a classifier on a target data distribution of interest. Under this setting, we provide the first generalization upper bound on the learning error under mild assumptions. Our results are algorithm agnostic, general for a range of loss functions, and only depend linearly on the averaged learning error across the trajectory. This shows significant improvement compared to the previous upper bound for unsupervised gradual domain adaptation, where the learning error on the target domain depends exponentially on the initial error on the source domain. Compared with the offline setting of learning from multiple domains, our results also suggest the potential benefits of the temporal structure among different domains in adapting to the target one. Empirically, our theoretical results imply that learning proper representations across the domains will effectively mitigate the learning errors. Motivated by these theoretical insights, we propose a min-max learning objective to learn the representation and classifier simultaneously. Experimental results on both semi-synthetic and large-scale real datasets corroborate our findings and demonstrate the effectiveness of our objectives.
PDF

点此查看论文截图

DATa: Domain Adaptation-Aided Deep Table Detection Using Visual-Lexical Representations

Authors:Hyebin Kwon, Joungbin An, Dongwoo Lee, Won-Yong Shin

Considerable research attention has been paid to table detection by developing not only rule-based approaches reliant on hand-crafted heuristics but also deep learning approaches. Although recent studies successfully perform table detection with enhanced results, they often experience performance degradation when they are used for transferred domains whose table layout features might differ from the source domain in which the underlying model has been trained. To overcome this problem, we present DATa, a novel Domain Adaptation-aided deep Table detection method that guarantees satisfactory performance in a specific target domain where few trusted labels are available. To this end, we newly design lexical features and an augmented model used for re-training. More specifically, after pre-training one of state-of-the-art vision-based models as our backbone network, we re-train our augmented model, consisting of the vision-based model and the multilayer perceptron (MLP) architecture. Using new confidence scores acquired based on the trained MLP architecture as well as an initial prediction of bounding boxes and their confidence scores, we calculate each confidence score more accurately. To validate the superiority of DATa, we perform experimental evaluations by adopting a real-world benchmark dataset in a source domain and another dataset in our target domain consisting of materials science articles. Experimental results demonstrate that the proposed DATa method substantially outperforms competing methods that only utilize visual representations in the target domain. Such gains are possible owing to the capability of eliminating high false positives or false negatives according to the setting of a confidence score threshold.
PDF 28 pages, 5 figures, 2 tables, published in the Knowledge-Based Systems (Please cite our journal version.)

点此查看论文截图

Few-shot Image Generation via Adaptation-Aware Kernel Modulation

Authors:Yunqing Zhao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, Ngai-Man Cheung

Few-shot image generation (FSIG) aims to learn to generate new and diverse samples given an extremely limited number of samples from a domain, e.g., 10 training samples. Recent work has addressed the problem using transfer learning approach, leveraging a GAN pretrained on a large-scale source domain dataset and adapting that model to the target domain based on very limited target domain samples. Central to recent FSIG methods are knowledge preserving criteria, which aim to select a subset of source model’s knowledge to be preserved into the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/source task, and they fail to consider target domain/adaptation task in selecting source model’s knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. As our first contribution, we re-visit recent FSIG works and their experiments. Our important finding is that, under setups which assumption of close proximity between source and target domains is relaxed, existing state-of-the-art (SOTA) methods which consider only source domain/source task in knowledge preserving perform no better than a baseline fine-tuning method. To address the limitation of existing methods, as our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) to address general FSIG of different source-target domain proximity. Extensive experimental results show that the proposed method consistently achieves SOTA performance across source/target domains of different proximity, including challenging setups when source and target domains are more apart. Project Page: https://yunqing-me.github.io/AdAM/
PDF The Thirty-Sixth Annual Conference on Neural Information Processing Systems (NeurIPS 2022), 14 pages

点此查看论文截图

Towards Generalization on Real Domain for Single Image Dehazing via Meta-Learning

Authors:Wenqi Ren, Qiyu Sun, Chaoqiang Zhao, Yang Tang

Learning-based image dehazing methods are essential to assist autonomous systems in enhancing reliability. Due to the domain gap between synthetic and real domains, the internal information learned from synthesized images is usually sub-optimal in real domains, leading to severe performance drop of dehaizing models. Driven by the ability on exploring internal information from a few unseen-domain samples, meta-learning is commonly adopted to address this issue via test-time training, which is hyperparameter-sensitive and time-consuming. In contrast, we present a domain generalization framework based on meta-learning to dig out representative and discriminative internal properties of real hazy domains without test-time training. To obtain representative domain-specific information, we attach two entities termed adaptation network and distance-aware aggregator to our dehazing network. The adaptation network assists in distilling domain-relevant information from a few hazy samples and caching it into a collection of features. The distance-aware aggregator strives to summarize the generated features and filter out misleading information for more representative internal properties. To enhance the discrimination of distilled internal information, we present a novel loss function called domain-relevant contrastive regularization, which encourages the internal features generated from the same domain more similar and that from diverse domains more distinct. The generated representative and discriminative features are regarded as some external variables of our dehazing network to regress a particular and powerful function for a given domain. The extensive experiments on real hazy datasets, such as RTTS and URHI, validate that our proposed method has superior generalization ability than the state-of-the-art competitors.
PDF

点此查看论文截图

Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning

Authors:Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, Guanbin Li

We investigate a practical domain adaptation task, called source-free domain adaptation (SFUDA), where the source-pretrained model is adapted to the target domain without access to the source data. Existing techniques mainly leverage self-supervised pseudo labeling to achieve class-wise global alignment [1] or rely on local structure extraction that encourages feature consistency among neighborhoods [2]. While impressive progress has been made, both lines of methods have their own drawbacks - the “global” approach is sensitive to noisy labels while the “local” counterpart suffers from source bias. In this paper, we present Divide and Contrast (DaC), a new paradigm for SFUDA that strives to connect the good ends of both worlds while bypassing their limitations. Based on the prediction confidence of the source model, DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals under an adaptive contrastive learning framework. Specifically, the source-like samples are utilized for learning global class clustering thanks to their relatively clean labels. The more noisy target-specific data are harnessed at the instance level for learning the intrinsic local structures. We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch. Extensive experiments on VisDA, Office-Home, and the more challenging DomainNet have verified the superior performance of DaC over current state-of-the-art approaches. The code is available at https://github.com/ZyeZhang/DaC.git.
PDF NeurIPS 2022 Accept

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录