Few-Shot


2022-11-14 更新

Zero-Label Prompt Selection

Authors:Chonghua Liao, Yanan Zheng, Zhilin Yang

Natural language prompts have been shown to facilitate cross-task generalization for large language models. However, with no or limited labeled examples, the cross-task performance is highly sensitive to the choice of prompts, while selecting a high-performing prompt is challenging given the scarcity of labels. To address the issue, we propose a Zero-Label Prompt Selection (ZPS) method that selects prompts without any labeled data or gradient update. Specifically, given the candidate human-written prompts for a task, ZPS labels a set of unlabeled data with a prompt ensemble and uses the pseudo-labels for prompt selection. Experiments show that ZPS improves over prior methods by a sizeable margin in zero-label performance. We also extend ZPS to a few-shot setting and show its advantages over strong baselines such as prompt tuning and model tuning.
PDF

点此查看论文截图

Multi-Faceted Distillation of Base-Novel Commonality for Few-shot Object Detection

Authors:Shuang Wu, Wenjie Pei, Dianwen Mei, Fanglin Chen, Jiandong Tian, Guangming Lu

Most of existing methods for few-shot object detection follow the fine-tuning paradigm, which potentially assumes that the class-agnostic generalizable knowledge can be learned and transferred implicitly from base classes with abundant samples to novel classes with limited samples via such a two-stage training strategy. However, it is not necessarily true since the object detector can hardly distinguish between class-agnostic knowledge and class-specific knowledge automatically without explicit modeling. In this work we propose to learn three types of class-agnostic commonalities between base and novel classes explicitly: recognition-related semantic commonalities, localization-related semantic commonalities and distribution commonalities. We design a unified distillation framework based on a memory bank, which is able to perform distillation of all three types of commonalities jointly and efficiently. Extensive experiments demonstrate that our method can be readily integrated into most of existing fine-tuning based methods and consistently improve the performance by a large margin.
PDF Accepted to ECCV 2022

点此查看论文截图

Gradient Imitation Reinforcement Learning for General Low-Resource Information Extraction

Authors:Xuming Hu, Shiao Meng, Chenwei Zhang, Xiangli Yang, Lijie Wen, Irwin King, Philip S. Yu

Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).
PDF This work has been submitted to the IEEE for possible publication. arXiv admin note: text overlap with arXiv:2109.06415

点此查看论文截图

Prompt Learning for Domain Adaptation in Task-Oriented Dialogue

Authors:Makesh Narsimhan Sreedhar, Christopher Parisien

Conversation designers continue to face significant obstacles when creating production quality task-oriented dialogue systems. The complexity and cost involved in schema development and data collection is often a major barrier for such designers, limiting their ability to create natural, user-friendly experiences. We frame the classification of user intent as the generation of a canonical form, a lightweight semantic representation using natural language. We show that canonical forms offer a promising alternative to traditional methods for intent classification. By tuning soft prompts for a frozen large language model, we show that canonical forms generalize very well to new, unseen domains in a zero- or few-shot setting. The method is also sample-efficient, reducing the complexity and effort of developing new task-oriented dialogue domains.
PDF Accepted for publication at SereTOD Workshop - EMNLP 2022

点此查看论文截图

Understanding Benign Overfitting in Gradient-Based Meta Learning

Authors:Lisha Chen, Songtao Lu, Tianyi Chen

Meta learning has demonstrated tremendous success in few-shot learning with limited supervised data. In those settings, the meta model is usually overparameterized. While the conventional statistical learning theory suggests that overparameterized models tend to overfit, empirical evidence reveals that overparameterized meta learning methods still work well — a phenomenon often called “benign overfitting.” To understand this phenomenon, we focus on the meta learning settings with a challenging bilevel structure that we term the gradient-based meta learning, and analyze its generalization performance under an overparameterized meta linear regression model. While our analysis uses the relatively tractable linear models, our theory contributes to understanding the delicate interplay among data heterogeneity, model adaptation and benign overfitting in gradient-based meta learning tasks. We corroborate our theoretical claims through numerical simulations.
PDF

点此查看论文截图

Few-shot Classification with Hypersphere Modeling of Prototypes

Authors:Ning Ding, Yulin Chen, Ganqu Cui, Xiaobin Wang, Hai-Tao Zheng, Zhiyuan Liu, Pengjun Xie

Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas’’) to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere’s center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
PDF preprint

点此查看论文截图

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning

Authors:Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, Jiawei Han

Recent studies have revealed the intriguing few-shot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label-discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.
PDF Code: https://github.com/yumeng5/FewGen

点此查看论文截图

2022-11-14 更新

StrokeGAN+: Few-Shot Semi-Supervised Chinese Font Generation with Stroke Encoding

Authors:Jinshan Zeng, Yefei Wang, Qi Chen, Yunxin Liu, Mingwen Wang, Yuan Yao

The generation of Chinese fonts has a wide range of applications. The currently predominated methods are mainly based on deep generative models, especially the generative adversarial networks (GANs). However, existing GAN-based models usually suffer from the well-known mode collapse problem. When mode collapse happens, the kind of GAN-based models will be failure to yield the correct fonts. To address this issue, we introduce a one-bit stroke encoding and a few-shot semi-supervised scheme (i.e., using a few paired data as semi-supervised information) to explore the local and global structure information of Chinese characters respectively, motivated by the intuition that strokes and characters directly embody certain local and global modes of Chinese characters. Based on these ideas, this paper proposes an effective model called \textit{StrokeGAN+}, which incorporates the stroke encoding and the few-shot semi-supervised scheme into the CycleGAN model. The effectiveness of the proposed model is demonstrated by amounts of experiments. Experimental results show that the mode collapse issue can be effectively alleviated by the introduced one-bit stroke encoding and few-shot semi-supervised training scheme, and that the proposed model outperforms the state-of-the-art models in fourteen font generation tasks in terms of four important evaluation metrics and the quality of generated characters. Besides CycleGAN, we also show that the proposed idea can be adapted to other existing models to improve their performance. The effectiveness of the proposed model for the zero-shot traditional Chinese font generation is also evaluated in this paper.
PDF

点此查看论文截图

Few-shot Image Generation with Diffusion Models

Authors:Jingyuan Zhu, Huimin Ma, Jiansheng Chen, Jian Yuan

Denoising diffusion probabilistic models (DDPMs) have been proven capable of synthesizing high-quality images with remarkable diversity when trained on large amounts of data. However, to our knowledge, few-shot image generation tasks have yet to be studied with DDPM-based approaches. Modern approaches are mainly built on Generative Adversarial Networks (GANs) and adapt models pre-trained on large source domains to target domains using a few available samples. In this paper, we make the first attempt to study when do DDPMs overfit and suffer severe diversity degradation as training data become scarce. Then we fine-tune DDPMs pre-trained on large source domains on limited target data directly. Our results show that utilizing knowledge from pre-trained models can accelerate convergence and improve generation quality and diversity compared with training from scratch. However, the fine-tuned models still fail to retain some diverse features and can only achieve limited diversity. Therefore, we propose a pairwise DDPM adaptation (DDPM-PA) approach based on a pairwise similarity loss to preserve the relative distances between generated samples during domain adaptation. DDPM-PA further improves generation diversity and achieves results better than current state-of-the-art GAN-based approaches. We demonstrate the effectiveness of DDPM-PA on a series of few-shot image generation tasks qualitatively and quantitatively.
PDF

点此查看论文截图

CCPrompt: Counterfactual Contrastive Prompt-Tuning for Many-Class Classification

Authors:Yang Li, Canran Xu, Tao Shen, Jing Jiang, Guodong Long

With the success of the prompt-tuning paradigm in Natural Language Processing (NLP), various prompt templates have been proposed to further stimulate specific knowledge for serving downstream tasks, e.g., machine translation, text generation, relation extraction, and so on. Existing prompt templates are mainly shared among all training samples with the information of task description. However, training samples are quite diverse. The sharing task description is unable to stimulate the unique task-related information in each training sample, especially for tasks with the finite-label space. To exploit the unique task-related information, we imitate the human decision process which aims to find the contrastive attributes between the objective factual and their potential counterfactuals. Thus, we propose the \textbf{C}ounterfactual \textbf{C}ontrastive \textbf{Prompt}-Tuning (CCPrompt) approach for many-class classification, e.g., relation classification, topic classification, and entity typing. Compared with simple classification tasks, these tasks have more complex finite-label spaces and are more rigorous for prompts. First of all, we prune the finite label space to construct fact-counterfactual pairs. Then, we exploit the contrastive attributes by projecting training instances onto every fact-counterfactual pair. We further set up global prototypes corresponding with all contrastive attributes for selecting valid contrastive attributes as additional tokens in the prompt template. Finally, a simple Siamese representation learning is employed to enhance the robustness of the model. We conduct experiments on relation classification, topic classification, and entity typing tasks in both fully supervised setting and few-shot setting. The results indicate that our model outperforms former baselines.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录