2022-11-10 更新
ScoreMix: A Scalable Augmentation Strategy for Training GANs with Limited Data
Authors:Jie Cao, Mandi Luo, Junchi Yu, Ming-Hsuan Yang, Ran He
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available. To facilitate GAN training, current methods propose to use data-specific augmentation techniques. Despite the effectiveness, it is difficult for these methods to scale to practical applications. In this work, we present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks. We first produce augmented samples using the convex combinations of the real samples. Then, we optimize the augmented samples by minimizing the norms of the data scores, i.e., the gradients of the log-density functions. This procedure enforces the augmented samples close to the data manifold. To estimate the scores, we train a deep estimation network with multi-scale score matching. For different image synthesis tasks, we train the score estimation network using different data. We do not require the tuning of the hyperparameters or modifications to the network architecture. The ScoreMix method effectively increases the diversity of data and reduces the overfitting problem. Moreover, it can be easily incorporated into existing GAN models with minor modifications. Experimental results on numerous tasks demonstrate that GAN models equipped with the ScoreMix method achieve significant improvements.
PDF
点此查看论文截图
Black-Box Attack against GAN-Generated Image Detector with Contrastive Perturbation
Authors:Zijie Lou, Gang Cao, Man Lin
Visually realistic GAN-generated facial images raise obvious concerns on potential misuse. Many effective forensic algorithms have been developed to detect such synthetic images in recent years. It is significant to assess the vulnerability of such forensic detectors against adversarial attacks. In this paper, we propose a new black-box attack method against GAN-generated image detectors. A novel contrastive learning strategy is adopted to train the encoder-decoder network based anti-forensic model under a contrastive loss function. GAN images and their simulated real counterparts are constructed as positive and negative samples, respectively. Leveraging on the trained attack model, imperceptible contrastive perturbation could be applied to input synthetic images for removing GAN fingerprint to some extent. As such, existing GAN-generated image detectors are expected to be deceived. Extensive experimental results verify that the proposed attack effectively reduces the accuracy of three state-of-the-art detectors on six popular GANs. High visual quality of the attacked images is also achieved. The source code will be available at https://github.com/ZXMMD/BAttGAND.
PDF
点此查看论文截图
Image Completion with Heterogeneously Filtered Spectral Hints
Authors:Xingqian Xu, Shant Navasardyan, Vahram Tadevosyan, Andranik Sargsyan, Yadong Mu, Humphrey Shi
Image completion with large-scale free-form missing regions is one of the most challenging tasks for the computer vision community. While researchers pursue better solutions, drawbacks such as pattern unawareness, blurry textures, and structure distortion remain noticeable, and thus leave space for improvement. To overcome these challenges, we propose a new StyleGAN-based image completion network, Spectral Hint GAN (SH-GAN), inside which a carefully designed spectral processing module, Spectral Hint Unit, is introduced. We also propose two novel 2D spectral processing strategies, Heterogeneous Filtering and Gaussian Split that well-fit modern deep learning models and may further be extended to other tasks. From our inclusive experiments, we demonstrate that our model can reach FID scores of 3.4134 and 7.0277 on the benchmark datasets FFHQ and Places2, and therefore outperforms prior works and reaches a new state-of-the-art. We also prove the effectiveness of our design via ablation studies, from which one may notice that the aforementioned challenges, i.e. pattern unawareness, blurry textures, and structure distortion, can be noticeably resolved. Our code will be open-sourced at: https://github.com/SHI-Labs/SH-GAN.
PDF wacv23
点此查看论文截图
Anisotropic multiresolution analyses for deepfake detection
Authors:Wei Huang, Michelangelo Valsecchi, Michael Multerer
Generative Adversarial Networks (GANs) have paved the path towards entirely new media generation capabilities at the forefront of image, video, and audio synthesis. However, they can also be misused and abused to fabricate elaborate lies, capable of stirring up the public debate. The threat posed by GANs has sparked the need to discern between genuine content and fabricated one. Previous studies have tackled this task by using classical machine learning techniques, such as k-nearest neighbours and eigenfaces, which unfortunately did not prove very effective. Subsequent methods have focused on leveraging on frequency decompositions, i.e., discrete cosine transform, wavelets, and wavelet packets, to preprocess the input features for classifiers. However, existing approaches only rely on isotropic transformations. We argue that, since GANs primarily utilize isotropic convolutions to generate their output, they leave clear traces, their fingerprint, in the coefficient distribution on sub-bands extracted by anisotropic transformations. We employ the fully separable wavelet transform and multiwavelets to obtain the anisotropic features to feed to standard CNN classifiers. Lastly, we find the fully separable transform capable of improving the state-of-the-art.
PDF
点此查看论文截图
Distilling Representations from GAN Generator via Squeeze and Span
Authors:Yu Yang, Xiaotian Cheng, Chang Liu, Hakan Bilen, Xiangyang Ji
In recent years, generative adversarial networks (GANs) have been an actively studied topic and shown to successfully produce high-quality realistic images in various domains. The controllable synthesis ability of GAN generators suggests that they maintain informative, disentangled, and explainable image representations, but leveraging and transferring their representations to downstream tasks is largely unexplored. In this paper, we propose to distill knowledge from GAN generators by squeezing and spanning their representations. We squeeze the generator features into representations that are invariant to semantic-preserving transformations through a network before they are distilled into the student network. We span the distilled representation of the synthetic domain to the real domain by also using real training data to remedy the mode collapse of GANs and boost the student network performance in a real domain. Experiments justify the efficacy of our method and reveal its great significance in self-supervised representation learning. Code is available at https://github.com/yangyu12/squeeze-and-span.
PDF 16 pages, NeurIPS 2022
点此查看论文截图
Few-shot Image Generation with Diffusion Models
Authors:Jingyuan Zhu, Huimin Ma, Jiansheng Chen, Jian Yuan
Denoising diffusion probabilistic models (DDPMs) have been proven capable of synthesizing high-quality images with remarkable diversity when trained on large amounts of data. However, to our knowledge, few-shot image generation tasks have yet to be studied with DDPM-based approaches. Modern approaches are mainly built on Generative Adversarial Networks (GANs) and adapt models pre-trained on large source domains to target domains using a few available samples. In this paper, we make the first attempt to study when do DDPMs overfit and suffer severe diversity degradation as training data become scarce. Then we propose to adapt DDPMs pre-trained on large source domains to target domains using limited data. Our results show that utilizing knowledge from pre-trained DDPMs can significantly accelerate convergence and improve the quality and diversity of the generated images. Moreover, we propose a DDPM-based pairwise similarity loss to preserve the relative distances between generated samples during domain adaptation. In this way, we further improve the generation diversity of the proposed DDPM-based approaches. We demonstrate the effectiveness of our approaches qualitatively and quantitatively on a series of few-shot image generation tasks and achieve results better than current state-of-the-art GAN-based approaches in quality and diversity.
PDF
点此查看论文截图
Learning to Annotate Part Segmentation with Gradient Matching
Authors:Yu Yang, Xiaotian Cheng, Hakan Bilen, Xiangyang Ji
The success of state-of-the-art deep neural networks heavily relies on the presence of large-scale labelled datasets, which are extremely expensive and time-consuming to annotate. This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN and labelling the generated images with an automatic annotator. In particular, we formulate the annotator learning as a learning-to-learn problem. Given a pre-trained GAN, the annotator learns to label object parts in a set of randomly generated images such that a part segmentation model trained on these synthetic images with their predicted labels obtains low segmentation error on a small validation set of manually labelled images. We further reduce this nested-loop optimization problem to a simple gradient matching problem and efficiently solve it with an iterative algorithm. We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images. Our method is evaluated with semi-supervised part segmentation tasks and significantly outperforms other semi-supervised competitors when the amount of labelled examples is extremely limited.
PDF ICLR 2022