Open-Set


2022-11-01 更新

Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning

Authors:Dongmin Park, Yooju Shin, Jihwan Bang, Youngjun Lee, Hwanjun Song, Jae-Gil Lee

Unlabeled data examples awaiting annotations contain open-set noise inevitably. A few active learning studies have attempted to deal with this open-set noise for sample selection by filtering out the noisy examples. However, because focusing on the purity of examples in a query set leads to overlooking the informativeness of the examples, the best balancing of purity and informativeness remains an important question. In this paper, to solve this purity-informativeness dilemma in open-set active learning, we propose a novel Meta-Query-Net,(MQ-Net) that adaptively finds the best balancing between the two factors. Specifically, by leveraging the multi-round property of active learning, we train MQ-Net using a query set without an additional validation set. Furthermore, a clear dominance relationship between unlabeled examples is effectively captured by MQ-Net through a novel skyline regularization. Extensive experiments on multiple open-set active learning scenarios demonstrate that the proposed MQ-Net achieves 20.14% improvement in terms of accuracy, compared with the state-of-the-art methods.
PDF to be published in NeurIPS 2022

点此查看论文截图

Towards Few-Shot Open-Set Object Detection

Authors:Binyi Su, Hua Zhang, Zhong Zhou

Open-set object detection (OSOD) aims to detect the known categories and identify unknown objects in a dynamic world, which has achieved significant attentions. However, previous approaches only consider this problem in data-abundant conditions. We seek a solution for few-shot open-set object detection (FSOSOD), which aims to quickly train a detector based on few samples while detecting all known classes and identifying unknown classes. The main challenge for this task is that few training samples tend to overfit on the known classes, and lead to poor open-set performance. We propose a new FSOSOD algorithm to tackle this issue, named FOOD, which contains a novel class dropout cosine classifier (CDCC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CDCC randomly inactivates parts of the normalized neurons for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any pseudo-unknown samples for training. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the recall of unknown classes by 5%-9% across all shots in VOC-COCO dataset setting.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录