2022-11-01 更新
Embedding Space Augmentation for Weakly Supervised Learning in Whole-Slide Images
Authors:Imaad Zaffar, Guillaume Jaume, Nasir Rajpoot, Faisal Mahmood
Multiple Instance Learning (MIL) is a widely employed framework for learning on gigapixel whole-slide images (WSIs) from WSI-level annotations. In most MIL based analytical pipelines for WSI-level analysis, the WSIs are often divided into patches and deep features for patches (i.e., patch embeddings) are extracted prior to training to reduce the overall computational cost and cope with the GPUs’ limited RAM. To overcome this limitation, we present EmbAugmenter, a data augmentation generative adversarial network (DA-GAN) that can synthesize data augmentations in the embedding space rather than in the pixel space, thereby significantly reducing the computational requirements. Experiments on the SICAPv2 dataset show that our approach outperforms MIL without augmentation and is on par with traditional patch-level augmentation for MIL training while being substantially faster.
PDF 5 pages, 3 figures, 1 table, ISBI 2023
点此查看论文截图
An Adversarial Active Sampling-based Data Augmentation Framework for Manufacturable Chip Design
Authors:Mingjie Liu, Haoyu Yang, Zongyi Li, Kumara Sastry, Saumyadip Mukhopadhyay, Selim Dogru, Anima Anandkumar, David Z. Pan, Brucek Khailany, Haoxing Ren
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable. It requires rigorous simulations of optical and chemical models that are computationally expensive. Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks. However, the considerable accuracy drop still impedes its industrial adoption. Most importantly, the quality and quantity of the training dataset directly affect the model performance. To tackle this problem, we propose a litho-aware data augmentation (LADA) framework to resolve the dilemma of limited data and improve the machine learning model performance. First, we pretrain the neural networks for lithography modeling and a gradient-friendly StyleGAN2 generator. We then perform adversarial active sampling to generate informative and synthetic in-distribution mask designs. These synthetic mask images will augment the original limited training dataset used to finetune the lithography model for improved performance. Experimental results demonstrate that LADA can successfully exploits the neural network capacity by narrowing down the performance gap between the training and testing data instances.
PDF
点此查看论文截图
Facetron: A Multi-speaker Face-to-Speech Model based on Cross-modal Latent Representations
Authors:Se-Yun Um, Jihyun Kim, Jihyun Lee, Hong-Goo Kang
In this paper, we propose a multi-speaker face-to-speech waveform generation model that also works for unseen speaker conditions. Using a generative adversarial network (GAN) with linguistic and speaker characteristic features as auxiliary conditions, our method directly converts face images into speech waveforms under an end-to-end training framework. The linguistic features are extracted from lip movements using a lip-reading model, and the speaker characteristic features are predicted from face images using cross-modal learning with a pre-trained acoustic model. Since these two features are uncorrelated and controlled independently, we can flexibly synthesize speech waveforms whose speaker characteristics vary depending on the input face images. We show the superiority of our proposed model over conventional methods in terms of objective and subjective evaluation results. Specifically, we evaluate the performances of linguistic features by measuring their accuracy on an automatic speech recognition task. In addition, we estimate speaker and gender similarity for multi-speaker and unseen conditions, respectively. We also evaluate the aturalness of the synthesized speech waveforms using a mean opinion score (MOS) test and non-intrusive objective speech quality assessment (NISQA).The demo samples of the proposed and other models are available at https://sam-0927.github.io/
PDF 5 pages (including references), 1 figure
点此查看论文截图
Recursive Reasoning in Minimax Games: A Level $k$ Gradient Play Method
Authors:Zichu Liu, Lacra Pavel
Despite the success of generative adversarial networks (GANs) in generating visually appealing images, they are notoriously challenging to train. In order to stabilize the learning dynamics in minimax games, we propose a novel recursive reasoning algorithm: Level $k$ Gradient Play (Lv.$k$ GP) algorithm. In contrast to many existing algorithms, our algorithm does not require sophisticated heuristics or curvature information. We show that as $k$ increases, Lv.$k$ GP converges asymptotically towards an accurate estimation of players’ future strategy. Moreover, we justify that Lv.$\infty$ GP naturally generalizes a line of provably convergent game dynamics which rely on predictive updates. Furthermore, we provide its local convergence property in nonconvex-nonconcave zero-sum games and global convergence in bilinear and quadratic games. By combining Lv.$k$ GP with Adam optimizer, our algorithm shows a clear advantage in terms of performance and computational overhead compared to other methods. Using a single Nvidia RTX3090 GPU and 30 times fewer parameters than BigGAN on CIFAR-10, we achieve an FID of 10.17 for unconditional image generation within 30 hours, allowing GAN training on common computational resources to reach state-of-the-art performance.
PDF For the code associated with this paper, see https://github.com/ZichuLiu/submission
点此查看论文截图
Few-shot Image Generation via Adaptation-Aware Kernel Modulation
Authors:Yunqing Zhao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, Ngai-Man Cheung
Few-shot image generation (FSIG) aims to learn to generate new and diverse samples given an extremely limited number of samples from a domain, e.g., 10 training samples. Recent work has addressed the problem using transfer learning approach, leveraging a GAN pretrained on a large-scale source domain dataset and adapting that model to the target domain based on very limited target domain samples. Central to recent FSIG methods are knowledge preserving criteria, which aim to select a subset of source model’s knowledge to be preserved into the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/source task, and they fail to consider target domain/adaptation task in selecting source model’s knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. As our first contribution, we re-visit recent FSIG works and their experiments. Our important finding is that, under setups which assumption of close proximity between source and target domains is relaxed, existing state-of-the-art (SOTA) methods which consider only source domain/source task in knowledge preserving perform no better than a baseline fine-tuning method. To address the limitation of existing methods, as our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) to address general FSIG of different source-target domain proximity. Extensive experimental results show that the proposed method consistently achieves SOTA performance across source/target domains of different proximity, including challenging setups when source and target domains are more apart. Project Page: https://yunqing-me.github.io/AdAM/
PDF
点此查看论文截图
Latent Space is Feature Space: Regularization Term for GANs Training on Limited Dataset
Authors:Pengwei Wang
Generative Adversarial Networks (GAN) is currently widely used as an unsupervised image generation method. Current state-of-the-art GANs can generate photorealistic images with high resolution. However, a large amount of data is required, or the model would prone to generate images with similar patterns (mode collapse) and bad quality. I proposed an additional structure and loss function for GANs called LFM, trained to maximize the feature diversity between the different dimensions of the latent space to avoid mode collapse without affecting the image quality. Orthogonal latent vector pairs are created, and feature vector pairs extracted by discriminator are examined by dot product, with which discriminator and generator are in a novel adversarial relationship. In experiments, this system has been built upon DCGAN and proved to have improvement on Frechet Inception Distance (FID) training from scratch on CelebA Dataset. This system requires mild extra performance and can work with data augmentation methods. The code is available on github.com/penway/LFM.
PDF