Few-Shot


2022-11-01 更新

Knowledge-in-Context: Towards Knowledgeable Semi-Parametric Language Models

Authors:Xiaoman Pan, Wenlin Yao, Hongming Zhang, Dian Yu, Dong Yu, Jianshu Chen

Fully-parametric language models generally require a huge number of model parameters to store the necessary knowledge for solving multiple natural language tasks in zero/few-shot settings. In addition, it is hard to adapt to the evolving world knowledge without the costly model re-training. In this paper, we develop a novel semi-parametric language model architecture, Knowledge-in-Context (KiC), which empowers a parametric text-to-text language model with a knowledge-rich external memory. Specifically, the external memory contains six different types of knowledge: entity, dictionary, commonsense, event, script, and causality knowledge. For each input instance, the KiC model adaptively selects a knowledge type and retrieves the most helpful pieces of knowledge. The input instance along with its knowledge augmentation is fed into a text-to-text model (e.g., T5) to generate the output answer, where both the input and the output are in natural language forms after prompting. Interestingly, we find that KiC can be identified as a special mixture-of-experts (MoE) model, where the knowledge selector plays the role of a router that is used to determine the sequence-to-expert assignment in MoE. This key observation inspires us to develop a novel algorithm for training KiC with an instance-adaptive knowledge selector. As a knowledge-rich semi-parametric language model, KiC only needs a much smaller parametric part to achieve superior zero-shot performance on unseen tasks. By evaluating on 40+ different tasks, we show that KiC_Large with 770M parameters easily outperforms large language models (LMs) that are 4-39x larger by a large margin. We also demonstrate that KiC exhibits emergent abilities at a much smaller model scale compared to the fully-parametric models.
PDF

点此查看论文截图

Formulating Few-shot Fine-tuning Towards Language Model Pre-training: A Pilot Study on Named Entity Recognition

Authors:Zihan Wang, Kewen Zhao, Zilong Wang, Jingbo Shang

Fine-tuning pre-trained language models has recently become a common practice in building NLP models for various tasks, especially few-shot tasks. We argue that under the few-shot setting, formulating fine-tuning closer to the pre-training objectives shall be able to unleash more benefits from the pre-trained language models. In this work, we take few-shot named entity recognition (NER) for a pilot study, where existing fine-tuning strategies are much different from pre-training. We propose a novel few-shot fine-tuning framework for NER, FFF-NER. Specifically, we introduce three new types of tokens, “is-entity”, “which-type” and bracket, so we can formulate the NER fine-tuning as (masked) token prediction or generation, depending on the choice of pre-trained language models. In our experiments, we apply FFF-NER to fine-tune both BERT and BART for few-shot NER on several benchmark datasets and observe significant improvements over existing fine-tuning strategies, including sequence labeling, prototype meta-learning, and prompt-based approaches. We further perform a series of ablation studies, showing few-shot NER performance is strongly correlated with the similarity between fine-tuning and pre-training.
PDF

点此查看论文截图

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Authors:Shan Zhang, Naila Murray, Lei Wang, Piotr Koniusz

In this paper, we tackle the challenging problem of Few-shot Object Detection. Existing FSOD pipelines (i) use average-pooled representations that result in information loss; and/or (ii) discard position information that can help detect object instances. Consequently, such pipelines are sensitive to large intra-class appearance and geometric variations between support and query images. To address these drawbacks, we propose a Time-rEversed diffusioN tEnsor Transformer (TENET), which i) forms high-order tensor representations that capture multi-way feature occurrences that are highly discriminative, and ii) uses a transformer that dynamically extracts correlations between the query image and the entire support set, instead of a single average-pooled support embedding. We also propose a Transformer Relation Head (TRH), equipped with higher-order representations, which encodes correlations between query regions and the entire support set, while being sensitive to the positional variability of object instances. Our model achieves state-of-the-art results on PASCAL VOC, FSOD, and COCO.
PDF Accepted at the 17th European Conference on Computer Vision (ECCV 2022)

点此查看论文截图

Temporal-Viewpoint Transportation Plan for Skeletal Few-shot Action Recognition

Authors:Lei Wang, Piotr Koniusz

We propose a Few-shot Learning pipeline for 3D skeleton-based action recognition by Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE). To factor out misalignment between query and support sequences of 3D body joints, we propose an advanced variant of Dynamic Time Warping which jointly models each smooth path between the query and support frames to achieve simultaneously the best alignment in the temporal and simulated camera viewpoint spaces for end-to-end learning under the limited few-shot training data. Sequences are encoded with a temporal block encoder based on Simple Spectral Graph Convolution, a lightweight linear Graph Neural Network backbone. We also include a setting with a transformer. Finally, we propose a similarity-based loss which encourages the alignment of sequences of the same class while preventing the alignment of unrelated sequences. We show state-of-the-art results on NTU-60, NTU-120, Kinetics-skeleton and UWA3D Multiview Activity II.
PDF Accepted as an oral paper at the 16th Asian Conference on Computer Vision (ACCV 2022). It extends our arXiv preprint arXiv:2112.12668 (2021)

点此查看论文截图

GPS: Genetic Prompt Search for Efficient Few-shot Learning

Authors:Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, Zhilin Yang

Prompt-based techniques have demostrated great potential for improving the few-shot generalization of pretrained language models. However, their performance heavily relies on the manual design of prompts and thus requires a lot of human efforts. In this paper, we introduce Genetic Prompt Search (GPS) to improve few-shot learning with prompts, which utilizes a genetic algorithm to automatically search for high-performing prompts. GPS is gradient-free and requires no update of model parameters but only a small validation set. Experiments on diverse datasets proved the effectiveness of GPS, which outperforms manual prompts by a large margin of 2.6 points. Our method is also better than other parameter-efficient tuning methods such as prompt tuning.
PDF 10 pages

点此查看论文截图

Towards Few-Shot Open-Set Object Detection

Authors:Binyi Su, Hua Zhang, Zhong Zhou

Open-set object detection (OSOD) aims to detect the known categories and identify unknown objects in a dynamic world, which has achieved significant attentions. However, previous approaches only consider this problem in data-abundant conditions. We seek a solution for few-shot open-set object detection (FSOSOD), which aims to quickly train a detector based on few samples while detecting all known classes and identifying unknown classes. The main challenge for this task is that few training samples tend to overfit on the known classes, and lead to poor open-set performance. We propose a new FSOSOD algorithm to tackle this issue, named FOOD, which contains a novel class dropout cosine classifier (CDCC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CDCC randomly inactivates parts of the normalized neurons for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any pseudo-unknown samples for training. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the recall of unknown classes by 5%-9% across all shots in VOC-COCO dataset setting.
PDF

点此查看论文截图

STPrompt: Semantic-guided and Task-driven prompts for Effective Few-shot Classification

Authors:Jinta Weng, Yue Hu, Jing Qiu, Heyan Huan

The effectiveness of prompt learning has been demonstrated in different pre-trained language models. By formulating suitable template and choosing representative label mapping, prompt learning can be used as an efficient knowledge probe. However, finding suitable prompt in existing methods requires multiple experimental attempts or appropriate vector initialization on formulating suitable template and choosing representative label mapping, which it is more common in few-shot learning tasks. Motivating by PLM working process, we try to construct the prompt from task semantic perspective and thus propose the STPrompt -Semantic-guided and Task-driven Prompt model. Specifically, two novel prompts generated from the semantic dependency tree (Dep-prompt) and task-specific metadata description (Meta-prompt), are firstly constructed in a prompt augmented pool, and the proposed model would automatically select a suitable semantic prompt to motivating the prompt learning process. Our results show that the proposed model achieves the state-of-the-art performance in five different datasets of few-shot text classification tasks, which prove that more semantic and significant prompts could assume as a better knowledge proving tool.
PDF

点此查看论文截图

Alleviating the Sample Selection Bias in Few-shot Learning by Removing Projection to the Centroid

Authors:Jing Xu, Xu Luo, Xinglin Pan, Wenjie Pei, Yanan Li, Zenglin Xu

Few-shot learning (FSL) targets at generalization of vision models towards unseen tasks without sufficient annotations. Despite the emergence of a number of few-shot learning methods, the sample selection bias problem, i.e., the sensitivity to the limited amount of support data, has not been well understood. In this paper, we find that this problem usually occurs when the positions of support samples are in the vicinity of task centroid — the mean of all class centroids in the task. This motivates us to propose an extremely simple feature transformation to alleviate this problem, dubbed Task Centroid Projection Removing (TCPR). TCPR is applied directly to all image features in a given task, aiming at removing the dimension of features along the direction of the task centroid. While the exact task centroid cannot be accurately obtained from limited data, we estimate it using base features that are each similar to one of the support features. Our method effectively prevents features from being too close to the task centroid. Extensive experiments over ten datasets from different domains show that TCPR can reliably improve classification accuracy across various feature extractors, training algorithms and datasets. The code has been made available at https://github.com/KikimorMay/FSL-TCBR.
PDF Accepted at NeurIPS 2022

点此查看论文截图

CobNet: Cross Attention on Object and Background for Few-Shot Segmentation

Authors:Haoyan Guan, Michael Spratling

Few-shot segmentation aims to segment images containing objects from previously unseen classes using only a few annotated samples. Most current methods focus on using object information extracted, with the aid of human annotations, from support images to identify the same objects in new query images. However, background information can also be useful to distinguish objects from their surroundings. Hence, some previous methods also extract background information from the support images. In this paper, we argue that such information is of limited utility, as the background in different images can vary widely. To overcome this issue, we propose CobNet which utilises information about the background that is extracted from the query images without annotations of those images. Experiments show that our method achieves a mean Intersection-over-Union score of 61.4% and 37.8% for 1-shot segmentation on PASCAL-5i and COCO-20i respectively, outperforming previous methods. It is also shown to produce state-of-the-art performances of 53.7% for weakly-supervised few-shot segmentation, where no annotations are provided for the support images.
PDF Accepted to ICPR2022

点此查看论文截图

AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning

Authors:Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao

Standard fine-tuning of large pre-trained language models (PLMs) for downstream tasks requires updating hundreds of millions to billions of parameters, and storing a large copy of the PLM weights for every task resulting in increased cost for storing, sharing and serving the models. To address this, parameter-efficient fine-tuning (PEFT) techniques were introduced where small trainable components are injected in the PLM and updated during fine-tuning. We propose AdaMix as a general PEFT method that tunes a mixture of adaptation modules — given the underlying PEFT method of choice — introduced in each Transformer layer while keeping most of the PLM weights frozen. For instance, AdaMix can leverage a mixture of adapters like Houlsby or a mixture of low rank decomposition matrices like LoRA to improve downstream task performance over the corresponding PEFT methods for fully supervised and few-shot NLU and NLG tasks. Further, we design AdaMix such that it matches the same computational cost and the number of tunable parameters as the underlying PEFT method. By only tuning 0.1-0.2% of PLM parameters, we show that AdaMix outperforms SOTA parameter-efficient fine-tuning and full model fine-tuning for both NLU and NLG tasks.
PDF Accepted by EMNLP 2022. arXiv admin note: substantial text overlap with arXiv:2205.12410

点此查看论文截图

A Broad Dataset is All You Need for One-Shot Object Detection

Authors:Claudio Michaelis, Matthias Bethge, Alexander S. Ecker

Is it possible to detect arbitrary objects from a single example? A central problem of all existing attempts at one-shot object detection is the generalization gap: Object categories used during training are detected much more reliably than novel ones. We here show that this generalization gap can be nearly closed by increasing the number of object categories used during training. Doing so allows us to improve generalization from seen to unseen classes from 45% to 89% and improve the state-of-the-art on COCO by 5.4 %AP50 (from 22.0 to 27.5). We verify that the effect is caused by the number of categories and not the number of training samples, and that it holds for different models, backbones and datasets. This result suggests that the key to strong few-shot detection models may not lie in sophisticated metric learning approaches, but instead simply in scaling the number of categories. We hope that our findings will help to better understand the challenges of few-shot learning and encourage future data annotation efforts to focus on wider datasets with a broader set of categories rather than gathering more samples per category.
PDF

点此查看论文截图

Few-shot Image Generation via Adaptation-Aware Kernel Modulation

Authors:Yunqing Zhao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, Ngai-Man Cheung

Few-shot image generation (FSIG) aims to learn to generate new and diverse samples given an extremely limited number of samples from a domain, e.g., 10 training samples. Recent work has addressed the problem using transfer learning approach, leveraging a GAN pretrained on a large-scale source domain dataset and adapting that model to the target domain based on very limited target domain samples. Central to recent FSIG methods are knowledge preserving criteria, which aim to select a subset of source model’s knowledge to be preserved into the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/source task, and they fail to consider target domain/adaptation task in selecting source model’s knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. As our first contribution, we re-visit recent FSIG works and their experiments. Our important finding is that, under setups which assumption of close proximity between source and target domains is relaxed, existing state-of-the-art (SOTA) methods which consider only source domain/source task in knowledge preserving perform no better than a baseline fine-tuning method. To address the limitation of existing methods, as our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) to address general FSIG of different source-target domain proximity. Extensive experimental results show that the proposed method consistently achieves SOTA performance across source/target domains of different proximity, including challenging setups when source and target domains are more apart. Project Page: https://yunqing-me.github.io/AdAM/
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录