2022-10-31 更新
CyCLIP: Cyclic Contrastive Language-Image Pretraining
Authors:Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan A. Rossi, Vishwa Vinay, Aditya Grover
Recent advances in contrastive representation learning over paired image-text data have led to models such as CLIP that achieve state-of-the-art performance for zero-shot classification and distributional robustness. Such models typically require joint reasoning in the image and text representation spaces for downstream inference tasks. Contrary to prior beliefs, we demonstrate that the image and text representations learned via a standard contrastive objective are not interchangeable and can lead to inconsistent downstream predictions. To mitigate this issue, we formalize consistency and propose CyCLIP, a framework for contrastive representation learning that explicitly optimizes for the learned representations to be geometrically consistent in the image and text space. In particular, we show that consistent representations can be learned by explicitly symmetrizing (a) the similarity between the two mismatched image-text pairs (cross-modal consistency); and (b) the similarity between the image-image pair and the text-text pair (in-modal consistency). Empirically, we show that the improved consistency in CyCLIP translates to significant gains over CLIP, with gains ranging from 10%-24% for zero-shot classification accuracy on standard benchmarks (CIFAR-10, CIFAR-100, ImageNet1K) and 10%-27% for robustness to various natural distribution shifts. The code is available at https://github.com/goel-shashank/CyCLIP.
PDF 19 pages, 13 tables, 6 figures, Oral at NeuRIPS 2022
点此查看论文截图
IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised Medical Image Segmentation
Authors:Hritam Basak, Soumitri Chattopadhyay, Rohit Kundu, Sayan Nag, Rammohan Mallipeddi
Due to the scarcity of labeled data, Contrastive Self-Supervised Learning (SSL) frameworks have lately shown great potential in several medical image analysis tasks. However, the existing contrastive mechanisms are sub-optimal for dense pixel-level segmentation tasks due to their inability to mine local features. To this end, we extend the concept of metric learning to the segmentation task, using a dense (dis)similarity learning for pre-training a deep encoder network, and employing a semi-supervised paradigm to fine-tune for the downstream task. Specifically, we propose a simple convolutional projection head for obtaining dense pixel-level features, and a new contrastive loss to utilize these dense projections thereby improving the local representations. A bidirectional consistency regularization mechanism involving two-stream model training is devised for the downstream task. Upon comparison, our IDEAL method outperforms the SoTA methods by fair margins on cardiac MRI segmentation.
PDF
点此查看论文截图
Energy-Based Contrastive Learning of Visual Representations
Authors:Beomsu Kim, Jong Chul Ye
Contrastive learning is a method of learning visual representations by training Deep Neural Networks (DNNs) to increase the similarity between representations of positive pairs (transformations of the same image) and reduce the similarity between representations of negative pairs (transformations of different images). Here we explore Energy-Based Contrastive Learning (EBCLR) that leverages the power of generative learning by combining contrastive learning with Energy-Based Models (EBMs). EBCLR can be theoretically interpreted as learning the joint distribution of positive pairs, and it shows promising results on small and medium-scale datasets such as MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. Specifically, we find EBCLR demonstrates from X4 up to X20 acceleration compared to SimCLR and MoCo v2 in terms of training epochs. Furthermore, in contrast to SimCLR, we observe EBCLR achieves nearly the same performance with 254 negative pairs (batch size 128) and 30 negative pairs (batch size 16) per positive pair, demonstrating the robustness of EBCLR to small numbers of negative pairs. Hence, EBCLR provides a novel avenue for improving contrastive learning methods that usually require large datasets with a significant number of negative pairs per iteration to achieve reasonable performance on downstream tasks. Code: https://github.com/1202kbs/EBCLR
PDF NeurIPS 2022 Oral Paper
点此查看论文截图
Contrastive Attention for Automatic Chest X-ray Report Generation
Authors:Xuewei Ma, Fenglin Liu, Changchang Yin, Xian Wu, Shen Ge, Yuexian Zou, Ping Zhang, Xu Sun
Recently, chest X-ray report generation, which aims to automatically generate descriptions of given chest X-ray images, has received growing research interests. The key challenge of chest X-ray report generation is to accurately capture and describe the abnormal regions. In most cases, the normal regions dominate the entire chest X-ray image, and the corresponding descriptions of these normal regions dominate the final report. Due to such data bias, learning-based models may fail to attend to abnormal regions. In this work, to effectively capture and describe abnormal regions, we propose the Contrastive Attention (CA) model. Instead of solely focusing on the current input image, the CA model compares the current input image with normal images to distill the contrastive information. The acquired contrastive information can better represent the visual features of abnormal regions. According to the experiments on the public IU-X-ray and MIMIC-CXR datasets, incorporating our CA into several existing models can boost their performance across most metrics. In addition, according to the analysis, the CA model can help existing models better attend to the abnormal regions and provide more accurate descriptions which are crucial for an interpretable diagnosis. Specifically, we achieve the state-of-the-art results on the two public datasets.
PDF Appear in Findings of ACL 2021 (The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021))