I2I Translation


2022-10-30 更新

CyCLIP: Cyclic Contrastive Language-Image Pretraining

Authors:Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan A. Rossi, Vishwa Vinay, Aditya Grover

Recent advances in contrastive representation learning over paired image-text data have led to models such as CLIP that achieve state-of-the-art performance for zero-shot classification and distributional robustness. Such models typically require joint reasoning in the image and text representation spaces for downstream inference tasks. Contrary to prior beliefs, we demonstrate that the image and text representations learned via a standard contrastive objective are not interchangeable and can lead to inconsistent downstream predictions. To mitigate this issue, we formalize consistency and propose CyCLIP, a framework for contrastive representation learning that explicitly optimizes for the learned representations to be geometrically consistent in the image and text space. In particular, we show that consistent representations can be learned by explicitly symmetrizing (a) the similarity between the two mismatched image-text pairs (cross-modal consistency); and (b) the similarity between the image-image pair and the text-text pair (in-modal consistency). Empirically, we show that the improved consistency in CyCLIP translates to significant gains over CLIP, with gains ranging from 10%-24% for zero-shot classification accuracy on standard benchmarks (CIFAR-10, CIFAR-100, ImageNet1K) and 10%-27% for robustness to various natural distribution shifts. The code is available at https://github.com/goel-shashank/CyCLIP.
PDF 19 pages, 13 tables, 6 figures, Oral at NeuRIPS 2022

点此查看论文截图

Neural Color Operators for Sequential Image Retouching

Authors:Yili Wang, Xin Li, Kun Xu, Dongliang He, Qi Zhang, Fu Li, Errui Ding

We propose a novel image retouching method by modeling the retouching process as performing a sequence of newly introduced trainable neural color operators. The neural color operator mimics the behavior of traditional color operators and learns pixelwise color transformation while its strength is controlled by a scalar. To reflect the homomorphism property of color operators, we employ equivariant mapping and adopt an encoder-decoder structure which maps the non-linear color transformation to a much simpler transformation (i.e., translation) in a high dimensional space. The scalar strength of each neural color operator is predicted using CNN based strength predictors by analyzing global image statistics. Overall, our method is rather lightweight and offers flexible controls. Experiments and user studies on public datasets show that our method consistently achieves the best results compared with SOTA methods in both quantitative measures and visual qualities. The code and pretrained models are provided at https://github.com/amberwangyili/neurop
PDF Accepted to ECCV 2022. Code is available at https://github.com/amberwangyili/neurop

点此查看论文截图

Vitruvio: 3D Building Meshes via Single Perspective Sketches

Authors:Alberto Tono, Martin Fischer

Today’s architectural engineering and construction (AEC) software require a learning curve to generate a three-dimension building representation. This limits the ability to quickly validate the volumetric implications of an initial design idea communicated via a single sketch. Allowing designers to translate a single sketch to a 3D building will enable owners to instantly visualize 3D project information without the cognitive load required. If previous state-of-the-art (SOTA) data-driven methods for single view reconstruction (SVR) showed outstanding results in the reconstruction process from a single image or sketch, they lacked specific applications, analysis, and experiments in the AEC. Therefore, this research addresses this gap, introducing a deep learning method: Vitruvio. Vitruvio adapts Occupancy Network for SVR tasks on a specific building dataset (Manhattan 1K). This adaptation brings two main improvements. First, it accelerates the inference process by more than 26\% (from 0.5s to 0.37s). Second, it increases the reconstruction accuracy (measured by the Chamfer Distance) by 18\%. During this adaptation in the AEC domain, we evaluate the effect of the building orientation in the learning procedure since it constitutes an important design factor. While aligning all the buildings to a canonical pose improved the overall quantitative metrics, it did not capture fine-grain details in more complex building shapes (as shown in our qualitative analysis). Finally, Vitruvio outputs a 3D-printable building mesh with arbitrary topology and genus from a single perspective sketch, providing a step forward to allow owners and designers to communicate 3D information via a 2D, effective, intuitive, and universal communication medium: the sketch.
PDF

点此查看论文截图

Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis

Authors:Wenda Xu, Yilin Tuan, Yujie Lu, Michael Saxon, Lei Li, William Yang Wang

Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
PDF EMNLP2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录