2022-10-30 更新
Efficient few-shot learning for pixel-precise handwritten document layout analysis
Authors:Axel De Nardin, Silvia Zottin, Matteo Paier, Gian Luca Foresti, Emanuela Colombi, Claudio Piciarelli
Layout analysis is a task of uttermost importance in ancient handwritten document analysis and represents a fundamental step toward the simplification of subsequent tasks such as optical character recognition and automatic transcription. However, many of the approaches adopted to solve this problem rely on a fully supervised learning paradigm. While these systems achieve very good performance on this task, the drawback is that pixel-precise text labeling of the entire training set is a very time-consuming process, which makes this type of information rarely available in a real-world scenario. In the present paper, we address this problem by proposing an efficient few-shot learning framework that achieves performances comparable to current state-of-the-art fully supervised methods on the publicly available DIVA-HisDB dataset.
PDF Accepted for publication at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023
点此查看论文截图
Lafite2: Few-shot Text-to-Image Generation
Authors:Yufan Zhou, Chunyuan Li, Changyou Chen, Jianfeng Gao, Jinhui Xu
Text-to-image generation models have progressed considerably in recent years, which can now generate impressive realistic images from arbitrary text. Most of such models are trained on web-scale image-text paired datasets, which may not be affordable for many researchers. In this paper, we propose a novel method for pre-training text-to-image generation model on image-only datasets. It considers a retrieval-then-optimization procedure to synthesize pseudo text features: for a given image, relevant pseudo text features are first retrieved, then optimized for better alignment. The low requirement of the proposed method yields high flexibility and usability: it can be beneficial to a wide range of settings, including the few-shot, semi-supervised and fully-supervised learning; it can be applied on different models including generative adversarial networks (GANs) and diffusion models. Extensive experiments illustrate the effectiveness of the proposed method. On MS-COCO dataset, our GAN model obtains Fr\’echet Inception Distance (FID) of 6.78 which is the new state-of-the-art (SoTA) of GANs under fully-supervised setting. Our diffusion model obtains FID of 8.42 and 4.28 on zero-shot and supervised setting respectively, which are competitive to SoTA diffusion models with a much smaller model size.
PDF
点此查看论文截图
Towards Practical Few-Shot Query Sets: Transductive Minimum Description Length Inference
Authors:Ségolène Martin, Malik Boudiaf, Emilie Chouzenoux, Jean-Christophe Pesquet, Ismail Ben Ayed
Standard few-shot benchmarks are often built upon simplifying assumptions on the query sets, which may not always hold in practice. In particular, for each task at testing time, the classes effectively present in the unlabeled query set are known a priori, and correspond exactly to the set of classes represented in the labeled support set. We relax these assumptions and extend current benchmarks, so that the query-set classes of a given task are unknown, but just belong to a much larger set of possible classes. Our setting could be viewed as an instance of the challenging yet practical problem of extremely imbalanced K-way classification, K being much larger than the values typically used in standard benchmarks, and with potentially irrelevant supervision from the support set. Expectedly, our setting incurs drops in the performances of state-of-the-art methods. Motivated by these observations, we introduce a PrimAl Dual Minimum Description LEngth (PADDLE) formulation, which balances data-fitting accuracy and model complexity for a given few-shot task, under supervision constraints from the support set. Our constrained MDL-like objective promotes competition among a large set of possible classes, preserving only effective classes that befit better the data of a few-shot task. It is hyperparameter free, and could be applied on top of any base-class training. Furthermore, we derive a fast block coordinate descent algorithm for optimizing our objective, with convergence guarantee, and a linear computational complexity at each iteration. Comprehensive experiments over the standard few-shot datasets and the more realistic and challenging i-Nat dataset show highly competitive performances of our method, more so when the numbers of possible classes in the tasks increase. Our code is publicly available at https://github.com/SegoleneMartin/PADDLE.
PDF
点此查看论文截图
Schema-aware Reference as Prompt Improves Data-Efficient Relational Triple and Event Extraction
Authors:Yunzhi Yao, Shengyu Mao, Xiang Chen, Ningyu Zhang, Shumin Deng, Huajun Chen
Information Extraction, which aims to extract structural relational triple or event from unstructured texts, often suffers from data scarcity issues. With the development of pre-trained language models, many prompt-based approaches to data-efficient information extraction have been proposed and achieved impressive performance. However, existing prompt learning methods for information extraction are still susceptible to several potential limitations: (i) semantic gap between natural language and output structure knowledge with pre-defined schema; (ii) representation learning with locally individual instances limits the performance given the insufficient features. In this paper, we propose a novel approach of schema-aware Reference As Prompt (RAP), which dynamically leverage schema and knowledge inherited from global (few-shot) training data for each sample. Specifically, we propose a schema-aware reference store, which unifies symbolic schema and relevant textual instances. Then, we employ a dynamic reference integration module to retrieve pertinent knowledge from the datastore as prompts during training and inference. Experimental results demonstrate that RAP can be plugged into various existing models and outperforms baselines in low-resource settings on four datasets of relational triple extraction and event extraction. In addition, we provide comprehensive empirical ablations and case analysis regarding different types and scales of knowledge in order to better understand the mechanisms of RAP. Code is available in https://github.com/zjunlp/RAP.
PDF Work in progress
点此查看论文截图
Multi-lingual Evaluation of Code Generation Models
Authors:Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth, Bing Xiang
We present MBXP, an execution-based code completion benchmark in 10+ programming languages. This collection of datasets is generated by our conversion framework that translates prompts and test cases from the original MBPP dataset to the corresponding data in a target language. Based on this benchmark, we are able to evaluate code generation models in a multi-lingual fashion, and in particular discover generalization ability of language models on out-of-domain languages, advantages of large multi-lingual models over mono-lingual, benefits of few-shot prompting, and zero-shot translation abilities. In addition, we use our code generation model to perform large-scale bootstrapping to obtain synthetic canonical solutions in several languages. These solutions can be used for other code-related evaluations such as insertion-based, summarization, or code translation tasks where we demonstrate results and release as part of our benchmark.
PDF Code and data release: https://github.com/amazon-research/mbxp-exec-eval
点此查看论文截图
Multilingual Relation Classification via Efficient and Effective Prompting
Authors:Yuxuan Chen, David Harbecke, Leonhard Hennig
Prompting pre-trained language models has achieved impressive performance on various NLP tasks, especially in low data regimes. Despite the success of prompting in monolingual settings, applying prompt-based methods in multilingual scenarios has been limited to a narrow set of tasks, due to the high cost of handcrafting multilingual prompts. In this paper, we present the first work on prompt-based multilingual relation classification (RC), by introducing an efficient and effective method that constructs prompts from relation triples and involves only minimal translation for the class labels. We evaluate its performance in fully supervised, few-shot and zero-shot scenarios, and analyze its effectiveness across 14 languages, prompt variants, and English-task training in cross-lingual settings. We find that in both fully supervised and few-shot scenarios, our prompt method beats competitive baselines: fine-tuning XLM-R_EM and null prompts. It also outperforms the random baseline by a large margin in zero-shot experiments. Our method requires little in-language knowledge and can be used as a strong baseline for similar multilingual classification tasks.
PDF EMNLP 2022
点此查看论文截图
Fusion-based Few-Shot Morphing Attack Detection and Fingerprinting
Authors:Na Zhang, Shan Jia, Siwei Lyu, Xin Li
The vulnerability of face recognition systems to morphing attacks has posed a serious security threat due to the wide adoption of face biometrics in the real world. Most existing morphing attack detection (MAD) methods require a large amount of training data and have only been tested on a few predefined attack models. The lack of good generalization properties, especially in view of the growing interest in developing novel morphing attacks, is a critical limitation with existing MAD research. To address this issue, we propose to extend MAD from supervised learning to few-shot learning and from binary detection to multiclass fingerprinting in this paper. Our technical contributions include: 1) We propose a fusion-based few-shot learning (FSL) method to learn discriminative features that can generalize to unseen morphing attack types from predefined presentation attacks; 2) The proposed FSL based on the fusion of the PRNU model and Noiseprint network is extended from binary MAD to multiclass morphing attack fingerprinting (MAF). 3) We have collected a large-scale database, which contains five face datasets and eight different morphing algorithms, to benchmark the proposed few-shot MAF (FS-MAF) method. Extensive experimental results show the outstanding performance of our fusion-based FS-MAF. The code and data will be publicly available at https://github.com/nz0001na/mad maf.
PDF
点此查看论文截图
Few-Shot Learning for Clinical Natural Language Processing Using Siamese Neural Networks
Authors:David Oniani, Sonish Sivarajkumar, Yanshan Wang
Clinical Natural Language Processing (NLP) has become an emerging technology in healthcare that leverages a large amount of free-text data in electronic health records (EHRs) to improve patient care, support clinical decisions, and facilitate clinical and translational science research. Recently, deep learning has achieved state-of-the-art performance in many clinical NLP tasks. However, training deep learning models usually requires large annotated datasets, which are normally not publicly available and can be time-consuming to build in clinical domains. Working with smaller annotated datasets is typical in clinical NLP and therefore, ensuring that deep learning models perform well is crucial for the models to be used in real-world applications. A widely adopted approach is fine-tuning existing Pre-trained Language Models (PLMs), but these attempts fall short when the training dataset contains only a few annotated samples. Few-Shot Learning (FSL) has recently been investigated to tackle this problem. Siamese Neural Network (SNN) has been widely utilized as an FSL approach in computer vision, but has not been studied well in NLP. Furthermore, the literature on its applications in clinical domains is scarce. In this paper, we propose two SNN-based FSL approaches for clinical NLP, including Pre-Trained SNN (PT-SNN) and SNN with Second-Order Embeddings (SOE-SNN). We evaluated the proposed approaches on two clinical tasks, namely clinical text classification and clinical named entity recognition. We tested three few-shot settings including 4-shot, 8-shot, and 16-shot learning. Both clinical NLP tasks were benchmarked using three PLMs, including BERT,BioBERT, and BioClinicalBERT. The experimental results verified the effectiveness of the proposed SNN-based FSL approaches in both NLP tasks.
PDF
点此查看论文截图
CD-FSOD: A Benchmark for Cross-domain Few-shot Object Detection
Authors:Wuti Xiong, Li Liu
In this paper, we propose a study of the cross-domain few-shot object detection (CD-FSOD) benchmark, consisting of image data from a diverse data domain. On the proposed benchmark, we evaluate state-of-art FSOD approaches, including meta-learning FSOD approaches and fine-tuning FSOD approaches. The results show that these methods tend to fall, and even underperform the naive fine-tuning model. We analyze the reasons for their failure and introduce a strong baseline that uses a mutually-beneficial manner to alleviate the overfitting problem. Our approach is remarkably superior to existing approaches by significant margins (2.0\% on average) on the proposed benchmark. Our code is available at \url{https://github.com/FSOD/CD-FSOD}.
PDF
点此查看论文截图
Language Model Pre-Training with Sparse Latent Typing
Authors:Liliang Ren, Zixuan Zhang, Han Wang, Clare R. Voss, Chengxiang Zhai, Heng Ji
Modern large-scale Pre-trained Language Models (PLMs) have achieved tremendous success on a wide range of downstream tasks. However, most of the LM pre-training objectives only focus on text reconstruction, but have not sought to learn latent-level interpretable representations of sentences. In this paper, we manage to push the language models to obtain a deeper understanding of sentences by proposing a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types. Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge. Besides, the language model pre-trained with such an objective also significantly improves Information Extraction related downstream tasks in both supervised and few-shot settings. Our code is publicly available at: https://github.com/renll/SparseLT.
PDF EMNLP 2022 (Oral)
点此查看论文截图
In-Context Learning for Few-Shot Dialogue State Tracking
Authors:Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, Noah A. Smith, Mari Ostendorf
Collecting and annotating task-oriented dialogues is time-consuming and costly; thus, zero and few shot learning could greatly benefit dialogue state tracking (DST). In this work, we propose an in-context learning (ICL) framework for zero-shot and few-shot learning DST, where a large pre-trained language model (LM) takes a test instance and a few exemplars as input, and directly decodes the dialogue state without any parameter updates. To better leverage a tabular domain description in the LM prompt, we reformulate DST into a text-to-SQL problem. We also propose a novel approach to retrieve annotated dialogues as exemplars. Empirical results on MultiWOZ show that our method IC-DST substantially outperforms previous fine-tuned state-of-the-art models in few-shot settings. In addition, we test IC-DST in zero-shot settings, in which the model only takes a fixed task instruction as input, finding that it outperforms previous zero-shot methods by a large margin.
PDF To appear in Findings of EMNLP 2022
点此查看论文截图
Prompting ELECTRA: Few-Shot Learning with Discriminative Pre-Trained Models
Authors:Mengzhou Xia, Mikel Artetxe, Jingfei Du, Danqi Chen, Ves Stoyanov
Pre-trained masked language models successfully perform few-shot learning by formulating downstream tasks as text infilling. However, as a strong alternative in full-shot settings, discriminative pre-trained models like ELECTRA do not fit into the paradigm. In this work, we adapt prompt-based few-shot learning to ELECTRA and show that it outperforms masked language models in a wide range of tasks. ELECTRA is pre-trained to distinguish if a token is generated or original. We naturally extend that to prompt-based few-shot learning by training to score the originality of the target options without introducing new parameters. Our method can be easily adapted to tasks involving multi-token predictions without extra computation overhead. Analysis shows that ELECTRA learns distributions that align better with downstream tasks.
PDF Accepted to EMNLP 2022; The code is available at https://github.com/facebookresearch/ELECTRA-Fewshot-Learning
点此查看论文截图
Few-shot Fine-grained Image Classification via Multi-Frequency Neighborhood and Double-cross Modulation
Authors:Hegui Zhu, Zhan Gao, Jiayi Wang, Yange Zhou, Chengqing Li
Traditional fine-grained image classification typically relies on large-scale training samples with annotated ground-truth. However, some sub-categories have few available samples in real-world applications, and current few-shot models still have difficulty in distinguishing subtle differences among fine-grained categories. To solve this challenge, we propose a novel few-shot fine-grained image classification network (FicNet) using multi-frequency neighborhood (MFN) and double-cross modulation (DCM). MFN focuses on both spatial domain and frequency domain to capture multi-frequency structural representations, which reduces the influence of appearance and background changes to the intra-class distance. DCM consists of bi-crisscross component and double 3D cross-attention component. It modulates the representations by considering global context information and inter-class relationship respectively, which enables the support and query samples respond to the same parts and accurately identify the subtle inter-class differences. The comprehensive experiments on three fine-grained benchmark datasets for two few-shot tasks verify that FicNet has excellent performance compared to the state-of-the-art methods. Especially, the experiments on two datasets, “Caltech-UCSD Birds” and “Stanford Cars”, can obtain classification accuracy 93.17\% and 95.36\%, respectively. They are even higher than that the general fine-grained image classification methods can achieve.
PDF 13 pages, 11 figures
点此查看论文截图
Efficient Large Scale Language Modeling with Mixtures of Experts
Authors:Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, Ves Stoyanov
Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation. This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings: in- and out-of-domain language modeling, zero- and few-shot priming, and full-shot fine-tuning. With the exception of fine-tuning, we find MoEs to be substantially more compute efficient. At more modest training budgets, MoEs can match the performance of dense models using $\sim$4 times less compute. This gap narrows at scale, but our largest MoE model (1.1T parameters) consistently outperforms a compute-equivalent dense model (6.7B parameters). Overall, this performance gap varies greatly across tasks and domains, suggesting that MoE and dense models generalize differently in ways that are worthy of future study. We make our code and models publicly available for research use.
PDF EMNLP 2022
点此查看论文截图
Hierarchical Message-Passing Graph Neural Networks
Authors:Zhiqiang Zhong, Cheng-Te Li, Jun Pang
Graph Neural Networks (GNNs) have become a prominent approach to machine learning with graphs and have been increasingly applied in a multitude of domains. Nevertheless, since most existing GNN models are based on flat message-passing mechanisms, two limitations need to be tackled: (i) they are costly in encoding long-range information spanning the graph structure; (ii) they are failing to encode features in the high-order neighbourhood in the graphs as they only perform information aggregation across the observed edges in the original graph. To deal with these two issues, we propose a novel Hierarchical Message-passing Graph Neural Networks framework. The key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs, along with innovative intra- and inter-level propagation manners. The derived hierarchy creates shortcuts connecting far-away nodes so that informative long-range interactions can be efficiently accessed via message passing and incorporates meso- and macro-level semantics into the learned node representations. We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN), with the assistance of a hierarchical community detection algorithm. The theoretical analysis illustrates HC-GNN’s remarkable capacity in capturing long-range information without introducing heavy additional computation complexity. Empirical experiments conducted on 9 datasets under transductive, inductive, and few-shot settings exhibit that HC-GNN can outperform state-of-the-art GNN models in network analysis tasks, including node classification, link prediction, and community detection. Moreover, the model analysis further demonstrates HC-GNN’s robustness facing graph sparsity and the flexibility in incorporating different GNN encoders.
PDF
点此查看论文截图
A Comparative Attention Framework for Better Few-Shot Object Detection on Aerial Images
Authors:Pierre Le Jeune, Anissa Mokraoui
Few-Shot Object Detection (FSOD) methods are mainly designed and evaluated on natural image datasets such as Pascal VOC and MS COCO. However, it is not clear whether the best methods for natural images are also the best for aerial images. Furthermore, direct comparison of performance between FSOD methods is difficult due to the wide variety of detection frameworks and training strategies. Therefore, we propose a benchmarking framework that provides a flexible environment to implement and compare attention-based FSOD methods. The proposed framework focuses on attention mechanisms and is divided into three modules: spatial alignment, global attention, and fusion layer. To remain competitive with existing methods, which often leverage complex training, we propose new augmentation techniques designed for object detection. Using this framework, several FSOD methods are reimplemented and compared. This comparison highlights two distinct performance regimes on aerial and natural images: FSOD performs worse on aerial images. Our experiments suggest that small objects, which are harder to detect in the few-shot setting, account for the poor performance. Finally, we develop a novel multiscale alignment method, Cross-Scales Query-Support Alignment (XQSA) for FSOD, to improve the detection of small objects. XQSA outperforms the state-of-the-art significantly on DOTA and DIOR.
PDF