GAN


2022-10-25 更新

FairGen: Fair Synthetic Data Generation

Authors:Bhushan Chaudhari, Himanshu Choudhary, Aakash Agarwal, Kamna Meena, Tanmoy Bhowmik

With the rising adoption of Machine Learning across the domains like banking, pharmaceutical, ed-tech, etc, it has become utmost important to adopt responsible AI methods to ensure models are not unfairly discriminating against any group. Given the lack of clean training data, generative adversarial techniques are preferred to generate synthetic data with several state-of-the-art architectures readily available across various domains from unstructured data such as text, images to structured datasets modelling fraud detection and many more. These techniques overcome several challenges such as class imbalance, limited training data, restricted access to data due to privacy issues. Existing work focusing on generating fair data either works for a certain GAN architecture or is very difficult to tune across the GANs. In this paper, we propose a pipeline to generate fairer synthetic data independent of the GAN architecture. The proposed paper utilizes a pre-processing algorithm to identify and remove bias inducing samples. In particular, we claim that while generating synthetic data most GANs amplify bias present in the training data but by removing these bias inducing samples, GANs essentially focuses more on real informative samples. Our experimental evaluation on two open-source datasets demonstrates how the proposed pipeline is generating fair data along with improved performance in some cases.
PDF

点此查看论文截图

A Regularized Conditional GAN for Posterior Sampling in Inverse Problems

Authors:Matthew Bendel, Rizwan Ahmad, Philip Schniter

In inverse problems, one seeks to reconstruct an image from incomplete and/or degraded measurements. Such problems arise in magnetic resonance imaging (MRI), computed tomography, deblurring, superresolution, inpainting, and other applications. It is often the case that many image hypotheses are consistent with both the measurements and prior information, and so the goal is not to recover a single ``best’’ hypothesis but rather to explore the space of probable hypotheses, i.e., to sample from the posterior distribution. In this work, we propose a regularized conditional Wasserstein GAN that can generate dozens of high-quality posterior samples per second. Using quantitative evaluation metrics like conditional Fr\’{e}chet inception distance, we demonstrate that our method produces state-of-the-art posterior samples in both multicoil MRI and inpainting applications.
PDF

点此查看论文截图

UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs

Authors:Philipp Oberdiek, Gernot A. Fink, Matthias Rottmann

We present an approach to quantifying both aleatoric and epistemic uncertainty for deep neural networks in image classification, based on generative adversarial networks (GANs). While most works in the literature that use GANs to generate out-of-distribution (OoD) examples only focus on the evaluation of OoD detection, we present a GAN based approach to learn a classifier that produces proper uncertainties for OoD examples as well as for false positives (FPs). Instead of shielding the entire in-distribution data with GAN generated OoD examples which is state-of-the-art, we shield each class separately with out-of-class examples generated by a conditional GAN and complement this with a one-vs-all image classifier. In our experiments, in particular on CIFAR10, CIFAR100 and Tiny ImageNet, we improve over the OoD detection and FP detection performance of state-of-the-art GAN-training based classifiers. Furthermore, we also find that the generated GAN examples do not significantly affect the calibration error of our classifier and result in a significant gain in model accuracy.
PDF

点此查看论文截图

An Attention-Guided and Wavelet-Constrained Generative Adversarial Network for Infrared and Visible Image Fusion

Authors:Xiaowen Liu, Renhua Wang, Hongtao Huo, Xin Yang, Jing Li

The GAN-based infrared and visible image fusion methods have gained ever-increasing attention due to its effectiveness and superiority. However, the existing methods adopt the global pixel distribution of source images as the basis for discrimination, which fails to focus on the key modality information. Moreover, the dual-discriminator based methods suffer from the confrontation between the discriminators. To this end, we propose an attention-guided and wavelet-constrained GAN for infrared and visible image fusion (AWFGAN). In this method, two unique discrimination strategies are designed to improve the fusion performance. Specifically, we introduce the spatial attention modules (SAM) into the generator to obtain the spatial attention maps, and then the attention maps are utilized to force the discrimination of infrared images to focus on the target regions. In addition, we extend the discrimination range of visible information to the wavelet subspace, which can force the generator to restore the high-frequency details of visible images. Ablation experiments demonstrate the effectiveness of our method in eliminating the confrontation between discriminators. And the comparison experiments on public datasets demonstrate the effectiveness and superiority of the proposed method.
PDF

点此查看论文截图

Efficient Hair Style Transfer with Generative Adversarial Networks

Authors:Muhammed Pektas, Baris Gecer, Aybars Ugur

Despite the recent success of image generation and style transfer with Generative Adversarial Networks (GANs), hair synthesis and style transfer remain challenging due to the shape and style variability of human hair in in-the-wild conditions. The current state-of-the-art hair synthesis approaches struggle to maintain global composition of the target style and cannot be used in real-time applications due to their high running costs on high-resolution portrait images. Therefore, We propose a novel hairstyle transfer method, called EHGAN, which reduces computational costs to enable real-time processing while improving the transfer of hairstyle with better global structure compared to the other state-of-the-art hair synthesis methods. To achieve this goal, we train an encoder and a low-resolution generator to transfer hairstyle and then, increase the resolution of results with a pre-trained super-resolution model. We utilize Adaptive Instance Normalization (AdaIN) and design our novel Hair Blending Block (HBB) to obtain the best performance of the generator. EHGAN needs around 2.7 times and over 10,000 times less time consumption than the state-of-the-art MichiGAN and LOHO methods respectively while obtaining better photorealism and structural similarity to the desired style than its competitors.
PDF arXiv admin note: text overlap with arXiv:2010.16417 by other authors

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录