对抗攻击


2022-10-18 更新

Nowhere to Hide: A Lightweight Unsupervised Detector against Adversarial Examples

Authors:Hui Liu, Bo Zhao, Kehuan Zhang, Peng Liu

Although deep neural networks (DNNs) have shown impressive performance on many perceptual tasks, they are vulnerable to adversarial examples that are generated by adding slight but maliciously crafted perturbations to benign images. Adversarial detection is an important technique for identifying adversarial examples before they are entered into target DNNs. Previous studies to detect adversarial examples either targeted specific attacks or required expensive computation. How design a lightweight unsupervised detector is still a challenging problem. In this paper, we propose an AutoEncoder-based Adversarial Examples (AEAE) detector, that can guard DNN models by detecting adversarial examples with low computation in an unsupervised manner. The AEAE includes only a shallow autoencoder but plays two roles. First, a well-trained autoencoder has learned the manifold of benign examples. This autoencoder can produce a large reconstruction error for adversarial images with large perturbations, so we can detect significantly perturbed adversarial examples based on the reconstruction error. Second, the autoencoder can filter out the small noise and change the DNN’s prediction on adversarial examples with small perturbations. It helps to detect slightly perturbed adversarial examples based on the prediction distance. To cover these two cases, we utilize the reconstruction error and prediction distance from benign images to construct a two-tuple feature set and train an adversarial detector using the isolation forest algorithm. We show empirically that the AEAE is unsupervised and inexpensive against the most state-of-the-art attacks. Through the detection in these two cases, there is nowhere to hide adversarial examples.
PDF

点此查看论文截图

GAMA: Generative Adversarial Multi-Object Scene Attacks

Authors:Abhishek Aich, Calvin-Khang Ta, Akash Gupta, Chengyu Song, Srikanth V. Krishnamurthy, M. Salman Asif, Amit K. Roy-Chowdhury

The majority of methods for crafting adversarial attacks have focused on scenes with a single dominant object (e.g., images from ImageNet). On the other hand, natural scenes include multiple dominant objects that are semantically related. Thus, it is crucial to explore designing attack strategies that look beyond learning on single-object scenes or attack single-object victim classifiers. Due to their inherent property of strong transferability of perturbations to unknown models, this paper presents the first approach of using generative models for adversarial attacks on multi-object scenes. In order to represent the relationships between different objects in the input scene, we leverage upon the open-sourced pre-trained vision-language model CLIP (Contrastive Language-Image Pre-training), with the motivation to exploit the encoded semantics in the language space along with the visual space. We call this attack approach Generative Adversarial Multi-object scene Attacks (GAMA). GAMA demonstrates the utility of the CLIP model as an attacker’s tool to train formidable perturbation generators for multi-object scenes. Using the joint image-text features to train the generator, we show that GAMA can craft potent transferable perturbations in order to fool victim classifiers in various attack settings. For example, GAMA triggers ~16% more misclassification than state-of-the-art generative approaches in black-box settings where both the classifier architecture and data distribution of the attacker are different from the victim. Our code is available here: https://abhishekaich27.github.io/gama.html
PDF Accepted at NeurIPS 2022; First two authors contributed equally; Includes Supplementary Material

点此查看论文截图

Object-Attentional Untargeted Adversarial Attack

Authors:Chao Zhou, Yuan-Gen Wang, Guopu Zhu

Deep neural networks are facing severe threats from adversarial attacks. Most existing black-box attacks fool target model by generating either global perturbations or local patches. However, both global perturbations and local patches easily cause annoying visual artifacts in adversarial example. Compared with some smooth regions of an image, the object region generally has more edges and a more complex texture. Thus small perturbations on it will be more imperceptible. On the other hand, the object region is undoubtfully the decisive part of an image to classification tasks. Motivated by these two facts, we propose an object-attentional adversarial attack method for untargeted attack. Specifically, we first generate an object region by intersecting the object detection region from YOLOv4 with the salient object detection (SOD) region from HVPNet. Furthermore, we design an activation strategy to avoid the reaction caused by the incomplete SOD. Then, we perform an adversarial attack only on the detected object region by leveraging Simple Black-box Adversarial Attack (SimBA). To verify the proposed method, we create a unique dataset by extracting all the images containing the object defined by COCO from ImageNet-1K, named COCO-Reduced-ImageNet in this paper. Experimental results on ImageNet-1K and COCO-Reduced-ImageNet show that under various system settings, our method yields the adversarial example with better perceptual quality meanwhile saving the query budget up to 24.16\% compared to the state-of-the-art approaches including SimBA.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录