Diffusion Models


2022-10-18 更新

DiffGAR: Model-Agnostic Restoration from Generative Artifacts Using Image-to-Image Diffusion Models

Authors:Yueqin Yin, Lianghua Huang, Yu Liu, Kaiqi Huang

Recent generative models show impressive results in photo-realistic image generation. However, artifacts often inevitably appear in the generated results, leading to downgraded user experience and reduced performance in downstream tasks. This work aims to develop a plugin post-processing module for diverse generative models, which can faithfully restore images from diverse generative artifacts. This is challenging because: (1) Unlike traditional degradation patterns, generative artifacts are non-linear and the transformation function is highly complex. (2) There are no readily available artifact-image pairs. (3) Different from model-specific anti-artifact methods, a model-agnostic framework views the generator as a black-box machine and has no access to the architecture details. In this work, we first design a group of mechanisms to simulate generative artifacts of popular generators (i.e., GANs, autoregressive models, and diffusion models), given real images. Second, we implement the model-agnostic anti-artifact framework as an image-to-image diffusion model, due to its advantage in generation quality and capacity. Finally, we design a conditioning scheme for the diffusion model to enable both blind and non-blind image restoration. A guidance parameter is also introduced to allow for a trade-off between restoration accuracy and image quality. Extensive experiments show that our method significantly outperforms previous approaches on the proposed datasets and real-world artifact images.
PDF

点此查看论文截图

Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models

Authors:Chen Henry Wu, Saman Motamed, Shaunak Srivastava, Fernando De la Torre

Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows a “reporting bias” when used as control, and PromptGen can further de-bias this controlled distribution in an iterative manner. The code is available at https://github.com/ChenWu98/Generative-Visual-Prompt.
PDF NeurIPS 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录