2022-10-17 更新
Generalized One-shot Domain Adaptation of Generative Adversarial Networks
Authors:Zicheng Zhang, Yinglu Liu, Congying Han, Tiande Guo, Ting Yao, Tao Mei
The adaptation of a Generative Adversarial Network (GAN) aims to transfer a pre-trained GAN to a target domain with limited training data. In this paper, we focus on the one-shot case, which is more challenging and rarely explored in previous works. We consider that the adaptation from a source domain to a target domain can be decoupled into two parts: the transfer of global style like texture and color, and the emergence of new entities that do not belong to the source domain. While previous works mainly focus on style transfer, we propose a novel and concise framework to address the \textit{generalized one-shot adaptation} task for both style and entity transfer, in which a reference image and its binary entity mask are provided. Our core idea is to constrain the gap between the internal distributions of the reference and syntheses by sliced Wasserstein distance. To better achieve it, style fixation is used at first to roughly obtain the exemplary style, and an auxiliary network is introduced to the generator to disentangle entity and style transfer. Besides, to realize cross-domain correspondence, we propose the variational Laplacian regularization to constrain the smoothness of the adapted generator. Both quantitative and qualitative experiments demonstrate the effectiveness of our method in various scenarios. Code is available at \url{https://github.com/zhangzc21/Generalized-One-shot-GAN-adaptation}.
PDF NeurIPS 2022
点此查看论文截图
One Model to Edit Them All: Free-Form Text-Driven Image Manipulation with Semantic Modulations
Authors:Yiming Zhu, Hongyu Liu, Yibing Song, iyang Yuan, Xintong Han, Chun Yuan, Qifeng Chen, Jue Wang
Free-form text prompts allow users to describe their intentions during image manipulation conveniently. Based on the visual latent space of StyleGAN[21] and text embedding space of CLIP[34], studies focus on how to map these two latent spaces for text-driven attribute manipulations. Currently, the latent mapping between these two spaces is empirically designed and confines that each manipulation model can only handle one fixed text prompt. In this paper, we propose a method named Free-Form CLIP (FFCLIP), aiming to establish an automatic latent mapping so that one manipulation model handles free-form text prompts. Our FFCLIP has a cross-modality semantic modulation module containing semantic alignment and injection. The semantic alignment performs the automatic latent mapping via linear transformations with a cross attention mechanism. After alignment, we inject semantics from text prompt embeddings to the StyleGAN latent space. For one type of image (e.g., human portrait'), one FFCLIP model can be learned to handle free-form text prompts. Meanwhile, we observe that although each training text prompt only contains a single semantic meaning, FFCLIP can leverage text prompts with multiple semantic meanings for image manipulation. In the experiments, we evaluate FFCLIP on three types of images (i.e.,
human portraits’, cars', and
churches’). Both visual and numerical results show that FFCLIP effectively produces semantically accurate and visually realistic images. Project page: https://github.com/KumapowerLIU/FFCLIP.
PDF Accepted by NeurIPS 2022