2022-10-14 更新
NerfAcc: A General NeRF Acceleration Toolbox
Authors:Ruilong Li, Matthew Tancik, Angjoo Kanazawa
We propose NerfAcc, a toolbox for efficient volumetric rendering of radiance fields. We build on the techniques proposed in Instant-NGP, and extend these techniques to not only support bounded static scenes, but also for dynamic scenes and unbounded scenes. NerfAcc comes with a user-friendly Python API, and is ready for plug-and-play acceleration of most NeRFs. Various examples are provided to show how to use this toolbox. Code can be found here: https://github.com/KAIR-BAIR/nerfacc.
PDF Webpage: https://www.nerfacc.com/
点此查看论文截图
Multiplane NeRF-Supervised Disentanglement of Depth and Camera Pose from Videos
Authors:Yang Fu, Ishan Misra, Xiaolong Wang
We propose to perform self-supervised disentanglement of depth and camera pose from large-scale videos. We introduce an Autoencoder-based method to reconstruct the input video frames for training, without using any ground-truth annotations of depth and camera. The model encoders estimate the monocular depth and the camera pose. The decoder then constructs a Multiplane NeRF representation based on the depth encoder feature, and renders the input frames with the estimated camera. The learning is supervised by the reconstruction error, based on the assumption that the scene structure does not change in short periods of time in videos. Once the model is learned, it can be applied to multiple applications including depth estimation, camera pose estimation, and single image novel view synthesis. We show substantial improvements over previous self-supervised approaches on all tasks and even better results than counterparts trained with camera ground-truths in some applications. Our code will be made publicly available. Our project page is: https://oasisyang.github.io/self-mpinerf .
PDF Project page: https://oasisyang.github.io/self-mpinerf
点此查看论文截图
NeRF-SOS: Any-View Self-supervised Object Segmentation on Complex Scenes
Authors:Zhiwen Fan, Peihao Wang, Yifan Jiang, Xinyu Gong, Dejia Xu, Zhangyang Wang
Neural volumetric representations have shown the potential that Multi-layer Perceptrons (MLPs) can be optimized with multi-view calibrated images to represent scene geometry and appearance, without explicit 3D supervision. Object segmentation can enrich many downstream applications based on the learned radiance field. However, introducing hand-crafted segmentation to define regions of interest in a complex real-world scene is non-trivial and expensive as it acquires per view annotation. This paper carries out the exploration of self-supervised learning for object segmentation using NeRF for complex real-world scenes. Our framework, called NeRF with Self-supervised Object Segmentation NeRF-SOS, couples object segmentation and neural radiance field to segment objects in any view within a scene. By proposing a novel collaborative contrastive loss in both appearance and geometry levels, NeRF-SOS encourages NeRF models to distill compact geometry-aware segmentation clusters from their density fields and the self-supervised pre-trained 2D visual features. The self-supervised object segmentation framework can be applied to various NeRF models that both lead to photo-realistic rendering results and convincing segmentation maps for both indoor and outdoor scenarios. Extensive results on the LLFF, Tank & Temple, and BlendedMVS datasets validate the effectiveness of NeRF-SOS. It consistently surpasses other 2D-based self-supervised baselines and predicts finer semantics masks than existing supervised counterparts. Please refer to the video on our project page for more details:https://zhiwenfan.github.io/NeRF-SOS.
PDF