Few-Shot


2022-10-14 更新

Self-Attention Message Passing for Contrastive Few-Shot Learning

Authors:Ojas Kishorkumar Shirekar, Anuj Singh, Hadi Jamali-Rad

Humans have a unique ability to learn new representations from just a handful of examples with little to no supervision. Deep learning models, however, require an abundance of data and supervision to perform at a satisfactory level. Unsupervised few-shot learning (U-FSL) is the pursuit of bridging this gap between machines and humans. Inspired by the capacity of graph neural networks (GNNs) in discovering complex inter-sample relationships, we propose a novel self-attention based message passing contrastive learning approach (coined as SAMP-CLR) for U-FSL pre-training. We also propose an optimal transport (OT) based fine-tuning strategy (we call OpT-Tune) to efficiently induce task awareness into our novel end-to-end unsupervised few-shot classification framework (SAMPTransfer). Our extensive experimental results corroborate the efficacy of SAMPTransfer in a variety of downstream few-shot classification scenarios, setting a new state-of-the-art for U-FSL on both miniImagenet and tieredImagenet benchmarks, offering up to 7%+ and 5%+ improvements, respectively. Our further investigations also confirm that SAMPTransfer remains on-par with some supervised baselines on miniImagenet and outperforms all existing U-FSL baselines in a challenging cross-domain scenario. Our code can be found in our GitHub repository at https://github.com/ojss/SAMPTransfer/.
PDF

点此查看论文截图

Feature-Proxy Transformer for Few-Shot Segmentation

Authors:Jian-Wei Zhang, Yifan Sun, Yi Yang, Wei Chen

Few-shot segmentation (FSS) aims at performing semantic segmentation on novel classes given a few annotated support samples. With a rethink of recent advances, we find that the current FSS framework has deviated far from the supervised segmentation framework: Given the deep features, FSS methods typically use an intricate decoder to perform sophisticated pixel-wise matching, while the supervised segmentation methods use a simple linear classification head. Due to the intricacy of the decoder and its matching pipeline, it is not easy to follow such an FSS framework. This paper revives the straightforward framework of “feature extractor $+$ linear classification head” and proposes a novel Feature-Proxy Transformer (FPTrans) method, in which the “proxy” is the vector representing a semantic class in the linear classification head. FPTrans has two keypoints for learning discriminative features and representative proxies: 1) To better utilize the limited support samples, the feature extractor makes the query interact with the support features from the bottom to top layers using a novel prompting strategy. 2) FPTrans uses multiple local background proxies (instead of a single one) because the background is not homogeneous and may contain some novel foreground regions. These two keypoints are easily integrated into the vision transformer backbone with the prompting mechanism in the transformer. Given the learned features and proxies, FPTrans directly compares their cosine similarity for segmentation. Although the framework is straightforward, we show that FPTrans achieves competitive FSS accuracy on par with state-of-the-art decoder-based methods.
PDF NeurIPS 2022. Code available: https://github.com/Jarvis73/FPTrans

点此查看论文截图

Knowledge Injected Prompt Based Fine-tuning for Multi-label Few-shot ICD Coding

Authors:Zhichao Yang, Shufan Wang, Bhanu Pratap Singh Rawat, Avijit Mitra, Hong Yu

Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with average length of 3,000+ tokens. This task is challenging due to a high-dimensional space of multi-label assignment (tens of thousands of ICD codes) and the long-tail challenge: only a few codes (common diseases) are frequently assigned while most codes (rare diseases) are infrequently assigned. This study addresses the long-tail challenge by adapting a prompt-based fine-tuning technique with label semantics, which has been shown to be effective under few-shot setting. To further enhance the performance in medical domain, we propose a knowledge-enhanced longformer by injecting three domain-specific knowledge: hierarchy, synonym, and abbreviation with additional pretraining using contrastive learning. Experiments on MIMIC-III-full, a benchmark dataset of code assignment, show that our proposed method outperforms previous state-of-the-art method in 14.5% in marco F1 (from 10.3 to 11.8, P<0.001). To further test our model on few-shot setting, we created a new rare diseases coding dataset, MIMIC-III-rare50, on which our model improves marco F1 from 17.1 to 30.4 and micro F1 from 17.2 to 32.6 compared to previous method.
PDF Accepted by Findings of EMNLP 2022, code is available at https://github.com/whaleloops/KEPT

点此查看论文截图

FontTransformer: Few-shot High-resolution Chinese Glyph Image Synthesis via Stacked Transformers

Authors:Yitian Liu, Zhouhui Lian

Automatic generation of high-quality Chinese fonts from a few online training samples is a challenging task, especially when the amount of samples is very small. Existing few-shot font generation methods can only synthesize low-resolution glyph images that often possess incorrect topological structures or/and incomplete strokes. To address the problem, this paper proposes FontTransformer, a novel few-shot learning model, for high-resolution Chinese glyph image synthesis by using stacked Transformers. The key idea is to apply the parallel Transformer to avoid the accumulation of prediction errors and utilize the serial Transformer to enhance the quality of synthesized strokes. Meanwhile, we also design a novel encoding scheme to feed more glyph information and prior knowledge to our model, which further enables the generation of high-resolution and visually-pleasing glyph images. Both qualitative and quantitative experimental results demonstrate the superiority of our method compared to other existing approaches in the few-shot Chinese font synthesis task.
PDF 23 pages, 14 Figures

点此查看论文截图

Improving Radiology Report Generation Systems by Removing Hallucinated References to Non-existent Priors

Authors:Vignav Ramesh, Nathan Andrew Chi, Pranav Rajpurkar

Current deep learning models trained to generate radiology reports from chest radiographs are capable of producing clinically accurate, clear, and actionable text that can advance patient care. However, such systems all succumb to the same problem: making hallucinated references to non-existent prior reports. Such hallucinations occur because these models are trained on datasets of real-world patient reports that inherently refer to priors. To this end, we propose two methods to remove references to priors in radiology reports: (1) a GPT-3-based few-shot approach to rewrite medical reports without references to priors; and (2) a BioBERT-based token classification approach to directly remove words referring to priors. We use the aforementioned approaches to modify MIMIC-CXR, a publicly available dataset of chest X-rays and their associated free-text radiology reports; we then retrain CXR-RePaiR, a radiology report generation system, on the adapted MIMIC-CXR dataset. We find that our re-trained model—which we call CXR-ReDonE—outperforms previous report generation methods on clinical metrics, achieving an average BERTScore of 0.2351 (2.57% absolute improvement). We expect our approach to be broadly valuable in enabling current radiology report generation systems to be more directly integrated into clinical pipelines.
PDF 13 pages, 1 figure, 11 tables

点此查看论文截图

Language Models of Code are Few-Shot Commonsense Learners

Authors:Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, Graham Neubig

We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event — or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize’’ the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
PDF EMNLP 2022

点此查看论文截图

Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild

Authors:Yang Xiao, Vincent Lepetit, Renaud Marlet

Detecting objects and estimating their viewpoints in images are key tasks of 3D scene understanding. Recent approaches have achieved excellent results on very large benchmarks for object detection and viewpoint estimation. However, performances are still lagging behind for novel object categories with few samples. In this paper, we tackle the problems of few-shot object detection and few-shot viewpoint estimation. We demonstrate on both tasks the benefits of guiding the network prediction with class-representative features extracted from data in different modalities: image patches for object detection, and aligned 3D models for viewpoint estimation. Despite its simplicity, our method outperforms state-of-the-art methods by a large margin on a range of datasets, including PASCAL and COCO for few-shot object detection, and Pascal3D+ and ObjectNet3D for few-shot viewpoint estimation. Furthermore, when the 3D model is not available, we introduce a simple category-agnostic viewpoint estimation method by exploiting geometrical similarities and consistent pose labelling across different classes. While it moderately reduces performance, this approach still obtains better results than previous methods in this setting. Last, for the first time, we tackle the combination of both few-shot tasks, on three challenging benchmarks for viewpoint estimation in the wild, ObjectNet3D, Pascal3D+ and Pix3D, showing very promising results.
PDF Accepted by TPAMI, add experimental results and additional ablation studies

点此查看论文截图

CLASP: Few-Shot Cross-Lingual Data Augmentation for Semantic Parsing

Authors:Andy Rosenbaum, Saleh Soltan, Wael Hamza, Amir Saffari, Macro Damonte, Isabel Groves

A bottleneck to developing Semantic Parsing (SP) models is the need for a large volume of human-labeled training data. Given the complexity and cost of human annotation for SP, labeled data is often scarce, particularly in multilingual settings. Large Language Models (LLMs) excel at SP given only a few examples, however LLMs are unsuitable for runtime systems which require low latency. In this work, we propose CLASP, a simple method to improve low-resource SP for moderate-sized models: we generate synthetic data from AlexaTM 20B to augment the training set for a model 40x smaller (500M parameters). We evaluate on two datasets in low-resource settings: English PIZZA, containing either 348 or 16 real examples, and mTOP cross-lingual zero-shot, where training data is available only in English, and the model must generalize to four new languages. On both datasets, we show significant improvements over strong baseline methods.
PDF Accepted to AACL-IJCNLP 2022: The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing, November 21-24, 2022. See https://www.aacl2022.org/

点此查看论文截图

Few-Shot Continual Active Learning by a Robot

Authors:Ali Ayub, Carter Fendley

In this paper, we consider a challenging but realistic continual learning (CL) problem, Few-Shot Continual Active Learning (FoCAL), where a CL agent is provided with unlabeled data for a new or a previously learned task in each increment and the agent only has limited labeling budget available. Towards this, we build on the continual learning and active learning literature and develop a framework that can allow a CL agent to continually learn new object classes from a few labeled training examples. Our framework represents each object class using a uniform Gaussian mixture model (GMM) and uses pseudo-rehearsal to mitigate catastrophic forgetting. The framework also uses uncertainty measures on the Gaussian representations of the previously learned classes to find the most informative samples to be labeled in an increment. We evaluate our approach on the CORe-50 dataset and on a real humanoid robot for the object classification task. The results show that our approach not only produces state-of-the-art results on the dataset but also allows a real robot to continually learn unseen objects in a real environment with limited labeling supervision provided by its user.
PDF Accepted at NeurIPS 2022

点此查看论文截图

Language Models with Image Descriptors are Strong Few-Shot Video-Language Learners

Authors:Zhenhailong Wang, Manling Li, Ruochen Xu, Luowei Zhou, Jie Lei, Xudong Lin, Shuohang Wang, Ziyi Yang, Chenguang Zhu, Derek Hoiem, Shih-Fu Chang, Mohit Bansal, Heng Ji

The goal of this work is to build flexible video-language models that can generalize to various video-to-text tasks from few examples, such as domain-specific captioning, question answering, and future event prediction. Existing few-shot video-language learners focus exclusively on the encoder, resulting in the absence of a video-to-text decoder to handle generative tasks. Video captioners have been pretrained on large-scale video-language datasets, but they rely heavily on finetuning and lack the ability to generate text for unseen tasks in a few-shot setting. We propose VidIL, a few-shot Video-language Learner via Image and Language models, which demonstrates strong performance on few-shot video-to-text tasks without the necessity of pretraining or finetuning on any video datasets. We use the image-language models to translate the video content into frame captions, object, attribute, and event phrases, and compose them into a temporal structure template. We then instruct a language model, with a prompt containing a few in-context examples, to generate a target output from the composed content. The flexibility of prompting allows the model to capture any form of text input, such as automatic speech recognition (ASR) transcripts. Our experiments demonstrate the power of language models in understanding videos on a wide variety of video-language tasks, including video captioning, video question answering, video caption retrieval, and video future event prediction. Especially, on video future event prediction, our few-shot model significantly outperforms state-of-the-art supervised models trained on large-scale video datasets. Code and resources are publicly available for research purposes at https://github.com/MikeWangWZHL/VidIL .
PDF

点此查看论文截图

ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models

Authors:Chunyuan Li, Haotian Liu, Liunian Harold Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, Jianfeng Gao

Learning visual representations from natural language supervision has recently shown great promise in a number of pioneering works. In general, these language-augmented visual models demonstrate strong transferability to a variety of datasets and tasks. However, it remains challenging to evaluate the transferablity of these models due to the lack of easy-to-use evaluation toolkits and public benchmarks. To tackle this, we build ELEVATER (Evaluation of Language-augmented Visual Task-level Transfer), the first benchmark and toolkit for evaluating(pre-trained) language-augmented visual models. ELEVATER is composed of three components. (i) Datasets. As downstream evaluation suites, it consists of 20 image classification datasets and 35 object detection datasets, each of which is augmented with external knowledge. (ii) Toolkit. An automatic hyper-parameter tuning toolkit is developed to facilitate model evaluation on downstream tasks. (iii) Metrics. A variety of evaluation metrics are used to measure sample-efficiency (zero-shot and few-shot) and parameter-efficiency (linear probing and full model fine-tuning). ELEVATER is a platform for Computer Vision in the Wild (CVinW), and is publicly released at at https://computer-vision-in-the-wild.github.io/ELEVATER/
PDF NeurIPS 2022 (Datasets and Benchmarks Track). The first two authors contribute equally. Benchmark page: https://computer-vision-in-the-wild.github.io/ELEVATER/

点此查看论文截图

The Devil is in the Details: On Models and Training Regimes for Few-Shot Intent Classification

Authors:Mohsen Mesgar, Thy Thy Tran, Goran Glavas, Iryna Gurevych

Few-shot Intent Classification (FSIC) is one of the key challenges in modular task-oriented dialog systems. While advanced FSIC methods are similar in using pretrained language models to encode texts and nearest neighbour-based inference for classification, these methods differ in details. They start from different pretrained text encoders, use different encoding architectures with varying similarity functions, and adopt different training regimes. Coupling these mostly independent design decisions and the lack of accompanying ablation studies are big obstacle to identify the factors that drive the reported FSIC performance. We study these details across three key dimensions: (1) Encoding architectures: Cross-Encoder vs Bi-Encoders; (2) Similarity function: Parameterized (i.e., trainable) functions vs non-parameterized function; (3) Training regimes: Episodic meta-learning vs the straightforward (i.e., non-episodic) training. Our experimental results on seven FSIC benchmarks reveal three important findings. First, the unexplored combination of the cross-encoder architecture (with parameterized similarity scoring function) and episodic meta-learning consistently yields the best FSIC performance. Second, Episodic training yields a more robust FSIC classifier than non-episodic one. Third, in meta-learning methods, splitting an episode to support and query sets is not a must. Our findings paves the way for conducting state-of-the-art research in FSIC and more importantly raise the community’s attention to details of FSIC methods. We release our code and data publicly.
PDF

点此查看论文截图

Fine-grained Few-shot Recognition by Deep Object Parsing

Authors:Ruizhao Zhu, Pengkai Zhu, Samarth Mishra, Venkatesh Saligrama

We propose a new method for fine-grained few-shot recognition via deep object parsing. In our framework, an object is made up of K distinct parts and for each part, we learn a dictionary of templates, which is shared across all instances and categories. An object is parsed by estimating the locations of these K parts and a set of active templates that can reconstruct the part features. We recognize test instances by comparing its active templates and the relative geometry of its part locations against those of the presented few-shot instances. Our method is end-to-end trainable to learn part templates on-top of a convolutional backbone. To combat visual distortions such as orientation, pose and size, we learn templates at multiple scales, and at test-time parse and match instances across these scales. We show that our method is competitive with the state-of-the-art, and by virtue of parsing enjoys interpretability as well.
PDF

点此查看论文截图

MetaPrompting: Learning to Learn Better Prompts

Authors:Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li, Wanxiang Che

Prompting method is regarded as one of the crucial progress for few-shot nature language processing. Recent research on prompting moves from discrete tokens based hard prompts'' to continuoussoft prompts’’, which employ learnable vectors as pseudo prompt tokens and achieve better performance. Though showing promising prospects, these soft-prompting methods are observed to rely heavily on good initialization to take effect. Unfortunately, obtaining a perfect initialization for soft prompts requires understanding of inner language models working and elaborate design, which is no easy task and has to restart from scratch for each new task. To remedy this, we propose a generalized soft prompting method called MetaPrompting, which adopts the well-recognized model-agnostic meta-learning algorithm to automatically find better prompt initialization that facilitates fast adaptation to new prompting tasks.Extensive experiments show MetaPrompting tackles soft prompt initialization problem and brings significant improvement on four different datasets (over 6 points improvement in accuracy for 1-shot setting), achieving new state-of-the-art performance.
PDF Accepted as COLING 2022 long paper

点此查看论文截图

Low-resource Neural Machine Translation with Cross-modal Alignment

Authors:Zhe Yang, Qingkai Fang, Yang Feng

How to achieve neural machine translation with limited parallel data? Existing techniques often rely on large-scale monolingual corpora, which is impractical for some low-resource languages. In this paper, we turn to connect several low-resource languages to a particular high-resource one by additional visual modality. Specifically, we propose a cross-modal contrastive learning method to learn a shared space for all languages, where both a coarse-grained sentence-level objective and a fine-grained token-level one are introduced. Experimental results and further analysis show that our method can effectively learn the cross-modal and cross-lingual alignment with a small amount of image-text pairs and achieves significant improvements over the text-only baseline under both zero-shot and few-shot scenarios.
PDF Accepted to EMNLP 2022

点此查看论文截图

Prompt-based Connective Prediction Method for Fine-grained Implicit Discourse Relation Recognition

Authors:Hao Zhou, Man Lan, Yuanbin Wu, Yuefeng Chen, Meirong Ma

Due to the absence of connectives, implicit discourse relation recognition (IDRR) is still a challenging and crucial task in discourse analysis. Most of the current work adopted multitask learning to aid IDRR through explicit discourse relation recognition (EDRR) or utilized dependencies between discourse relation labels to constrain model predictions. But these methods still performed poorly on fine-grained IDRR and even utterly misidentified on most of the few-shot discourse relation classes. To address these problems, we propose a novel Prompt-based Connective Prediction (PCP) method for IDRR. Our method instructs large-scale pre-trained models to use knowledge relevant to discourse relation and utilizes the strong correlation between connectives and discourse relation to help the model recognize implicit discourse relations. Experimental results show that our method surpasses the current state-of-the-art model and achieves significant improvements on those fine-grained few-shot discourse relation. Moreover, our approach is able to be transferred to EDRR and obtain acceptable results. Our code is released in https://github.com/zh-i9/PCP-for-IDRR.
PDF Findings of EMNLP 2022 Accepted

点此查看论文截图

Intermediate Prototype Mining Transformer for Few-Shot Semantic Segmentation

Authors:Yuanwei Liu, Nian Liu, Xiwen Yao, Junwei Han

Few-shot semantic segmentation aims to segment the target objects in query under the condition of a few annotated support images. Most previous works strive to mine more effective category information from the support to match with the corresponding objects in query. However, they all ignored the category information gap between query and support images. If the objects in them show large intra-class diversity, forcibly migrating the category information from the support to the query is ineffective. To solve this problem, we are the first to introduce an intermediate prototype for mining both deterministic category information from the support and adaptive category knowledge from the query. Specifically, we design an Intermediate Prototype Mining Transformer (IPMT) to learn the prototype in an iterative way. In each IPMT layer, we propagate the object information in both support and query features to the prototype and then use it to activate the query feature map. By conducting this process iteratively, both the intermediate prototype and the query feature can be progressively improved. At last, the final query feature is used to yield precise segmentation prediction. Extensive experiments on both PASCAL-5i and COCO-20i datasets clearly verify the effectiveness of our IPMT and show that it outperforms previous state-of-the-art methods by a large margin. Code is available at https://github.com/LIUYUANWEI98/IPMT
PDF Accepted to NeurIPS 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录