I2I Translation


2022-10-12 更新

Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis

Authors:Wenda Xu, Yilin Tuan, Yujie Lu, Michael Saxon, Lei Li, William Yang Wang

Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
PDF

点此查看论文截图

Unifying Diffusion Models’ Latent Space, with Applications to CycleDiffusion and Guidance

Authors:Chen Henry Wu, Fernando De la Torre

Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.
PDF

点此查看论文截图

Understanding the Failure of Batch Normalization for Transformers in NLP

Authors:Jiaxi Wang, Ji Wu, Lei Huang

Batch Normalization (BN) is a core and prevalent technique in accelerating the training of deep neural networks and improving the generalization on Computer Vision (CV) tasks. However, it fails to defend its position in Natural Language Processing (NLP), which is dominated by Layer Normalization (LN). In this paper, we are trying to answer why BN usually performs worse than LN in NLP tasks with Transformer models. We find that the inconsistency between training and inference of BN is the leading cause that results in the failure of BN in NLP. We define Training Inference Discrepancy (TID) to quantitatively measure this inconsistency and reveal that TID can indicate BN’s performance, supported by extensive experiments, including image classification, neural machine translation, language modeling, sequence labeling, and text classification tasks. We find that BN can obtain much better test performance than LN when TID keeps small through training. To suppress the explosion of TID, we propose Regularized BN (RBN) that adds a simple regularization term to narrow the gap between batch statistics and population statistics of BN. RBN improves the performance of BN consistently and outperforms or is on par with LN on 17 out of 20 settings, involving ten datasets and two common variants of Transformer\footnote{Our code is available at \url{https://github.com/wjxts/RegularizedBN}}.
PDF 17 pages, 11 figures, NeurIPS 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录