2022-10-12 更新
FreGAN: Exploiting Frequency Components for Training GANs under Limited Data
Authors:Mengping Yang, Zhe Wang, Ziqiu Chi, Yanbing Zhang
Training GANs under limited data often leads to discriminator overfitting and memorization issues, causing divergent training. Existing approaches mitigate the overfitting by employing data augmentations, model regularization, or attention mechanisms. However, they ignore the frequency bias of GANs and take poor consideration towards frequency information, especially high-frequency signals that contain rich details. To fully utilize the frequency information of limited data, this paper proposes FreGAN, which raises the model’s frequency awareness and draws more attention to producing high-frequency signals, facilitating high-quality generation. In addition to exploiting both real and generated images’ frequency information, we also involve the frequency signals of real images as a self-supervised constraint, which alleviates the GAN disequilibrium and encourages the generator to synthesize adequate rather than arbitrary frequency signals. Extensive results demonstrate the superiority and effectiveness of our FreGAN in ameliorating generation quality in the low-data regime (especially when training data is less than 100). Besides, FreGAN can be seamlessly applied to existing regularization and attention mechanism models to further boost the performance.
PDF To appear in NeurIPS 2022, github:https://github.com/kobeshegu/FreGAN_NeurIPS2022
点此查看论文截图
Image-Based CLIP-Guided Essence Transfer
Authors:Hila Chefer, Sagie Benaim, Roni Paiss, Lior Wolf
We make the distinction between (i) style transfer, in which a source image is manipulated to match the textures and colors of a target image, and (ii) essence transfer, in which one edits the source image to include high-level semantic attributes from the target. Crucially, the semantic attributes that constitute the essence of an image may differ from image to image. Our blending operator combines the powerful StyleGAN generator and the semantic encoder of CLIP in a novel way that is simultaneously additive in both latent spaces, resulting in a mechanism that guarantees both identity preservation and high-level feature transfer without relying on a facial recognition network. We present two variants of our method. The first is based on optimization, while the second fine-tunes an existing inversion encoder to perform essence extraction. Through extensive experiments, we demonstrate the superiority of our methods for essence transfer over existing methods for style transfer, domain adaptation, and text-based semantic editing. Our code is available at https://github.com/hila-chefer/TargetCLIP.
PDF To appear in ECCV’22
点此查看论文截图
Unifying Diffusion Models’ Latent Space, with Applications to CycleDiffusion and Guidance
Authors:Chen Henry Wu, Fernando De la Torre
Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.
PDF