2022-10-11 更新
Few-Shot Continual Active Learning by a Robot
Authors:Ali Ayub, Carter Fendley
In this paper, we consider a challenging but realistic continual learning (CL) problem, Few-Shot Continual Active Learning (FoCAL), where a CL agent is provided with unlabeled data for a new or a previously learned task in each increment and the agent only has limited labeling budget available. Towards this, we build on the continual learning and active learning literature and develop a framework that can allow a CL agent to continually learn new object classes from a few labeled training examples. Our framework represents each object class using a uniform Gaussian mixture model (GMM) and uses pseudo-rehearsal to mitigate catastrophic forgetting. The framework also uses uncertainty measures on the Gaussian representations of the previously learned classes to find the most informative samples to be labeled in an increment. We evaluate our approach on the CORe-50 dataset and on a real humanoid robot for the object classification task. The results show that our approach not only produces state-of-the-art results on the dataset but also allows a real robot to continually learn unseen objects in a real environment with limited labeling supervision provided by its user.
PDF Accepted at NeurIPS 2022
点此查看论文截图
Adaptive Distribution Calibration for Few-Shot Learning with Hierarchical Optimal Transport
Authors:Dandan Guo, Long Tian, He Zhao, Mingyuan Zhou, Hongyuan Zha
Few-shot classification aims to learn a classifier to recognize unseen classes during training, where the learned model can easily become over-fitted based on the biased distribution formed by only a few training examples. A recent solution to this problem is calibrating the distribution of these few sample classes by transferring statistics from the base classes with sufficient examples, where how to decide the transfer weights from base classes to novel classes is the key. However, principled approaches for learning the transfer weights have not been carefully studied. To this end, we propose a novel distribution calibration method by learning the adaptive weight matrix between novel samples and base classes, which is built upon a hierarchical Optimal Transport (H-OT) framework. By minimizing the high-level OT distance between novel samples and base classes, we can view the learned transport plan as the adaptive weight information for transferring the statistics of base classes. The learning of the cost function between a base class and novel class in the high-level OT leads to the introduction of the low-level OT, which considers the weights of all the data samples in the base class. Experimental results on standard benchmarks demonstrate that our proposed plug-and-play model outperforms competing approaches and owns desired cross-domain generalization ability, indicating the effectiveness of the learned adaptive weights.
PDF
点此查看论文截图
Singular Value Fine-tuning: Few-shot Segmentation requires Few-parameters Fine-tuning
Authors:Yanpeng Sun, Qiang Chen, Xiangyu He, Jian Wang, Haocheng Feng, Junyu Han, Errui Ding, Jian Cheng, Zechao Li, Jingdong Wang
Freezing the pre-trained backbone has become a standard paradigm to avoid overfitting in few-shot segmentation. In this paper, we rethink the paradigm and explore a new regime: {\em fine-tuning a small part of parameters in the backbone}. We present a solution to overcome the overfitting problem, leading to better model generalization on learning novel classes. Our method decomposes backbone parameters into three successive matrices via the Singular Value Decomposition (SVD), then {\em only fine-tunes the singular values} and keeps others frozen. The above design allows the model to adjust feature representations on novel classes while maintaining semantic clues within the pre-trained backbone. We evaluate our {\em Singular Value Fine-tuning (SVF)} approach on various few-shot segmentation methods with different backbones. We achieve state-of-the-art results on both Pascal-5$^i$ and COCO-20$^i$ across 1-shot and 5-shot settings. Hopefully, this simple baseline will encourage researchers to rethink the role of backbone fine-tuning in few-shot settings. The source code and models will be available at \url{https://github.com/syp2ysy/SVF}.
PDF Accepted to NeurIPS 2022
点此查看论文截图
Rethinking Generalization in Few-Shot Classification
Authors:Markus Hiller, Rongkai Ma, Mehrtash Harandi, Tom Drummond
Single image-level annotations only correctly describe an often small subset of an image’s content, particularly when complex real-world scenes are depicted. While this might be acceptable in many classification scenarios, it poses a significant challenge for applications where the set of classes differs significantly between training and test time. In this paper, we take a closer look at the implications in the context of $\textit{few-shot learning}$. Splitting the input samples into patches and encoding these via the help of Vision Transformers allows us to establish semantic correspondences between local regions across images and independent of their respective class. The most informative patch embeddings for the task at hand are then determined as a function of the support set via online optimization at inference time, additionally providing visual interpretability of `$\textit{what matters most}$’ in the image. We build on recent advances in unsupervised training of networks via masked image modelling to overcome the lack of fine-grained labels and learn the more general statistical structure of the data while avoiding negative image-level annotation influence, $\textit{aka}$ supervision collapse. Experimental results show the competitiveness of our approach, achieving new state-of-the-art results on four popular few-shot classification benchmarks for $5$-shot and $1$-shot scenarios.
PDF Accepted at NeurIPS 2022. Code available at https://github.com/mrkshllr/FewTURE
点此查看论文截图
Hierarchical Few-Shot Object Detection: Problem, Benchmark and Method
Authors:Lu Zhang, Yang Wang, Jiaogen Zhou, Chenbo Zhang, Yinglu Zhang, Jihong Guan, Yatao Bian, Shuigeng Zhou
Few-shot object detection (FSOD) is to detect objects with a few examples. However, existing FSOD methods do not consider hierarchical fine-grained category structures of objects that exist widely in real life. For example, animals are taxonomically classified into orders, families, genera and species etc. In this paper, we propose and solve a new problem called hierarchical few-shot object detection (Hi-FSOD), which aims to detect objects with hierarchical categories in the FSOD paradigm. To this end, on the one hand, we build the first large-scale and high-quality Hi-FSOD benchmark dataset HiFSOD-Bird, which contains 176,350 wild-bird images falling to 1,432 categories. All the categories are organized into a 4-level taxonomy, consisting of 32 orders, 132 families, 572 genera and 1,432 species. On the other hand, we propose the first Hi-FSOD method HiCLPL, where a hierarchical contrastive learning approach is developed to constrain the feature space so that the feature distribution of objects is consistent with the hierarchical taxonomy and the model’s generalization power is strengthened. Meanwhile, a probabilistic loss is designed to enable the child nodes to correct the classification errors of their parent nodes in the taxonomy. Extensive experiments on the benchmark dataset HiFSOD-Bird show that our method HiCLPL outperforms the existing FSOD methods.
PDF Accepted by ACM MM 2022
点此查看论文截图
Label-Driven Denoising Framework for Multi-Label Few-Shot Aspect Category Detection
Authors:Fei Zhao, Yuchen Shen, Zhen Wu, Xinyu Dai
Multi-Label Few-Shot Aspect Category Detection (FS-ACD) is a new sub-task of aspect-based sentiment analysis, which aims to detect aspect categories accurately with limited training instances. Recently, dominant works use the prototypical network to accomplish this task, and employ the attention mechanism to extract keywords of aspect category from the sentences to produce the prototype for each aspect. However, they still suffer from serious noise problems: (1) due to lack of sufficient supervised data, the previous methods easily catch noisy words irrelevant to the current aspect category, which largely affects the quality of the generated prototype; (2) the semantically-close aspect categories usually generate similar prototypes, which are mutually noisy and confuse the classifier seriously. In this paper, we resort to the label information of each aspect to tackle the above problems, along with proposing a novel Label-Driven Denoising Framework (LDF). Extensive experimental results show that our framework achieves better performance than other state-of-the-art methods.
PDF Finding of EMNLP 2022 camera-ready
点此查看论文截图
Margin-Based Few-Shot Class-Incremental Learning with Class-Level Overfitting Mitigation
Authors:Yixiong Zou, Shanghang Zhang, Yuhua Li, Ruixuan Li
Few-shot class-incremental learning (FSCIL) is designed to incrementally recognize novel classes with only few training samples after the (pre-)training on base classes with sufficient samples, which focuses on both base-class performance and novel-class generalization. A well known modification to the base-class training is to apply a margin to the base-class classification. However, a dilemma exists that we can hardly achieve both good base-class performance and novel-class generalization simultaneously by applying the margin during the base-class training, which is still under explored. In this paper, we study the cause of such dilemma for FSCIL. We first interpret this dilemma as a class-level overfitting (CO) problem from the aspect of pattern learning, and then find its cause lies in the easily-satisfied constraint of learning margin-based patterns. Based on the analysis, we propose a novel margin-based FSCIL method to mitigate the CO problem by providing the pattern learning process with extra constraint from the margin-based patterns themselves. Extensive experiments on CIFAR100, Caltech-USCD Birds-200-2011 (CUB200), and miniImageNet demonstrate that the proposed method effectively mitigates the CO problem and achieves state-of-the-art performance.
PDF
点此查看论文截图
Multi-Modal Fusion by Meta-Initialization
Authors:Matthew T. Jackson, Shreshth A. Malik, Michael T. Matthews, Yousuf Mohamed-Ahmed
When experience is scarce, models may have insufficient information to adapt to a new task. In this case, auxiliary information - such as a textual description of the task - can enable improved task inference and adaptation. In this work, we propose an extension to the Model-Agnostic Meta-Learning algorithm (MAML), which allows the model to adapt using auxiliary information as well as task experience. Our method, Fusion by Meta-Initialization (FuMI), conditions the model initialization on auxiliary information using a hypernetwork, rather than learning a single, task-agnostic initialization. Furthermore, motivated by the shortcomings of existing multi-modal few-shot learning benchmarks, we constructed iNat-Anim - a large-scale image classification dataset with succinct and visually pertinent textual class descriptions. On iNat-Anim, FuMI significantly outperforms uni-modal baselines such as MAML in the few-shot regime. The code for this project and a dataset exploration tool for iNat-Anim are publicly available at https://github.com/s-a-malik/multi-few .
PDF The first two authors contributed equally
点此查看论文截图
FS-DETR: Few-Shot DEtection TRansformer with prompting and without re-training
Authors:Adrian Bulat, Ricardo Guerrero, Brais Martinez, Georgios Tzimiropoulos
This paper is on Few-Shot Object Detection (FSOD), where given a few templates (examples) depicting a novel class (not seen during training), the goal is to detect all of its occurrences within a set of images. From a practical perspective, an FSOD system must fulfil the following desiderata: (a) it must be used as is, without requiring any fine-tuning at test time, (b) it must be able to process an arbitrary number of novel objects concurrently while supporting an arbitrary number of examples from each class and (c) it must achieve accuracy comparable to a closed system. While there are (relatively) few systems that support (a), to our knowledge, there is no system supporting (b) and (c). In this work, we make the following contributions: We introduce, for the first time, a simple, yet powerful, few-shot detection transformer (FS-DETR) that can address both desiderata (a) and (b). Our system builds upon the DETR framework, extending it based on two key ideas: (1) feed the provided visual templates of the novel classes as visual prompts during test time, and (2) ``stamp’’ these prompts with pseudo-class embeddings, which are then predicted at the output of the decoder. Importantly, we show that our system is not only more flexible than existing methods, but also, making a step towards satisfying desideratum (c), it is more accurate, matching and outperforming the current state-of-the-art on the most well-established benchmarks (PASCAL VOC & MSCOCO) for FSOD. Code will be made available.
PDF
点此查看论文截图
Improving Few-shot Learning by Spatially-aware Matching and CrossTransformer
Authors:Hongguang Zhang, Philip H. S. Torr, Piotr Koniusz
Current few-shot learning models capture visual object relations in the so-called meta-learning setting under a fixed-resolution input. However, such models have a limited generalization ability under the scale and location mismatch between objects, as only few samples from target classes are provided. Therefore, the lack of a mechanism to match the scale and location between pairs of compared images leads to the performance degradation. The importance of image contents varies across coarse-to-fine scales depending on the object and its class label, e.g., generic objects and scenes rely on their global appearance while fine-grained objects rely more on their localized visual patterns. In this paper, we study the impact of scale and location mismatch in the few-shot learning scenario, and propose a novel Spatially-aware Matching (SM) scheme to effectively perform matching across multiple scales and locations, and learn image relations by giving the highest weights to the best matching pairs. The SM is trained to activate the most related locations and scales between support and query data. We apply and evaluate SM on various few-shot learning models and backbones for comprehensive evaluations. Furthermore, we leverage an auxiliary self-supervisory discriminator to train/predict the spatial- and scale-level index of feature vectors we use. Finally, we develop a novel transformer-based pipeline to exploit self- and cross-attention in a spatially-aware matching process. Our proposed design is orthogonal to the choice of backbone and/or comparator.
PDF Asian Conference on Computer Vision 2022
点此查看论文截图
CounTR: Transformer-based Generalised Visual Counting
Authors:Chang Liu, Yujie Zhong, Andrew Zisserman, Weidi Xie
In this paper, we consider the problem of generalised visual object counting, with the goal of developing a computational model for counting the number of objects from arbitrary semantic categories, using arbitrary number of “exemplars”, i.e. zero-shot or few-shot counting. To this end, we make the following four contributions: (1) We introduce a novel transformer-based architecture for generalised visual object counting, termed as Counting Transformer (CounTR), which explicitly capture the similarity between image patches or with given “exemplars” with the attention mechanism;(2) We adopt a two-stage training regime, that first pre-trains the model with self-supervised learning, and followed by supervised fine-tuning;(3) We propose a simple, scalable pipeline for synthesizing training images with a large number of instances or that from different semantic categories, explicitly forcing the model to make use of the given “exemplars”;(4) We conduct thorough ablation studies on the large-scale counting benchmark, e.g. FSC-147, and demonstrate state-of-the-art performance on both zero and few-shot settings.
PDF Accepted by BMVC2022
点此查看论文截图
Zero-Shot Video Question Answering via Frozen Bidirectional Language Models
Authors:Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid
Video question answering (VideoQA) is a complex task that requires diverse multi-modal data for training. Manual annotation of question and answers for videos, however, is tedious and prohibits scalability. To tackle this problem, recent methods consider zero-shot settings with no manual annotation of visual question-answer. In particular, a promising approach adapts frozen autoregressive language models pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we here build on frozen bidirectional language models (BiLM) and show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA. In particular, (i) we combine visual inputs with the frozen BiLM using light trainable modules, (ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we perform zero-shot VideoQA inference through masked language modeling, where the masked text is the answer to a given question. Our proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA and TVQA. It also demonstrates competitive performance in the few-shot and fully-supervised setting. Our code and models are publicly available at https://github.com/antoyang/FrozenBiLM.
PDF NeurIPS 2022 Camera-Ready; Project Webpage: https://antoyang.github.io/frozenbilm.html; 25 pages; 5 figures