2022-10-09 更新
Edge-Varying Fourier Graph Networks for Multivariate Time Series Forecasting
Authors:Kun Yi, Qi Zhang
The key problem in multivariate time series (MTS) analysis and forecasting aims to disclose the underlying couplings between variables that drive the co-movements. Considerable recent successful MTS methods are built with graph neural networks (GNNs) due to their essential capacity for relational modeling. However, previous work often used a static graph structure of time-series variables for modeling MTS failing to capture their ever-changing correlations over time. To this end, a fully-connected supra-graph connecting any two variables at any two timestamps is adaptively learned to capture the high-resolution variable dependencies via an efficient graph convolutional network. Specifically, we construct the Edge-Varying Fourier Graph Networks (EV-FGN) equipped with Fourier Graph Shift Operator (FGSO) which efficiently performs graph convolution in the frequency domain. As a result, a high-efficiency scale-free parameter learning scheme is derived for MTS analysis and forecasting according to the convolution theorem. Extensive experiments show that EV-FGN outperforms state-of-the-art methods on seven real-world MTS datasets.
PDF
点此查看论文截图
MaPLe: Multi-modal Prompt Learning
Authors:Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, Fahad Shahbaz Khan
Pre-trained vision-language (V-L) models such as CLIP have shown excellent generalization ability to downstream tasks. However, they are sensitive to the choice of input text prompts and require careful selection of prompt templates to perform well. Inspired by the Natural Language Processing (NLP) literature, recent CLIP adaptation approaches learn prompts as the textual inputs to fine-tune CLIP for downstream tasks. We note that using prompting to adapt representations in a single branch of CLIP (language or vision) is sub-optimal since it does not allow the flexibility to dynamically adjust both representation spaces on a downstream task. In this work, we propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations. Our design promotes strong coupling between the vision-language prompts to ensure mutual synergy and discourages learning independent uni-modal solutions. Further, we learn separate prompts across different early stages to progressively model the stage-wise feature relationships to allow rich context learning. We evaluate the effectiveness of our approach on three representative tasks of generalization to novel classes, new target datasets and unseen domain shifts. Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes and 2.72% on overall harmonic-mean, averaged over 11 diverse image recognition datasets. Code: https://tinyurl.com/2dzs8f3w.
PDF Technical Report
点此查看论文截图
Depth Is All You Need for Monocular 3D Detection
Authors:Dennis Park, Jie Li, Dian Chen, Vitor Guizilini, Adrien Gaidon
A key contributor to recent progress in 3D detection from single images is monocular depth estimation. Existing methods focus on how to leverage depth explicitly, by generating pseudo-pointclouds or providing attention cues for image features. More recent works leverage depth prediction as a pretraining task and fine-tune the depth representation while training it for 3D detection. However, the adaptation is insufficient and is limited in scale by manual labels. In this work, we propose to further align depth representation with the target domain in unsupervised fashions. Our methods leverage commonly available LiDAR or RGB videos during training time to fine-tune the depth representation, which leads to improved 3D detectors. Especially when using RGB videos, we show that our two-stage training by first generating pseudo-depth labels is critical because of the inconsistency in loss distribution between the two tasks. With either type of reference data, our multi-task learning approach improves over the state of the art on both KITTI and NuScenes, while matching the test-time complexity of its single task sub-network.
PDF
点此查看论文截图
Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for Multi-Source Domain Adaptation
Authors:Tong Xu, Lin Wang, Wu Ning, Chunyan Lyu, Kejun Wang, Chenhui Wang
As a study on the efficient usage of data, Multi-source Unsupervised Domain Adaptation transfers knowledge from multiple source domains with labeled data to an unlabeled target domain. However, the distribution discrepancy between different domains and the noisy pseudo-labels in the target domain both lead to performance bottlenecks of the Multi-source Unsupervised Domain Adaptation methods. In light of this, we propose an approach that integrates Attention-driven Domain fusion and Noise-Tolerant learning (ADNT) to address the two issues mentioned above. Firstly, we establish a contrary attention structure to perform message passing between features and to induce domain movement. Through this approach, the discriminability of the features can also be significantly improved while the domain discrepancy is reduced. Secondly, based on the characteristics of the unsupervised domain adaptation training, we design an Adaptive Reverse Cross Entropy loss, which can directly impose constraints on the generation of pseudo-labels. Finally, combining these two approaches, experimental results on several benchmarks further validate the effectiveness of our proposed ADNT and demonstrate superior performance over the state-of-the-art methods.
PDF
点此查看论文截图
Cross-Modality Domain Adaptation for Freespace Detection: A Simple yet Effective Baseline
Authors:Yuanbin Wang, Leyan Zhu, Shaofei Huang, Tianrui Hui, Xiaojie Li, Fei Wang, Si Liu
As one of the fundamental functions of autonomous driving system, freespace detection aims at classifying each pixel of the image captured by the camera as drivable or non-drivable. Current works of freespace detection heavily rely on large amount of densely labeled training data for accuracy and robustness, which is time-consuming and laborious to collect and annotate. To the best of our knowledge, we are the first work to explore unsupervised domain adaptation for freespace detection to alleviate the data limitation problem with synthetic data. We develop a cross-modality domain adaptation framework which exploits both RGB images and surface normal maps generated from depth images. A Collaborative Cross Guidance (CCG) module is proposed to leverage the context information of one modality to guide the other modality in a cross manner, thus realizing inter-modality intra-domain complement. To better bridge the domain gap between source domain (synthetic data) and target domain (real-world data), we also propose a Selective Feature Alignment (SFA) module which only aligns the features of consistent foreground area between the two domains, thus realizing inter-domain intra-modality adaptation. Extensive experiments are conducted by adapting three different synthetic datasets to one real-world dataset for freespace detection respectively. Our method performs closely to fully supervised freespace detection methods (93.08 v.s. 97.50 F1 score) and outperforms other general unsupervised domain adaptation methods for semantic segmentation with large margins, which shows the promising potential of domain adaptation for freespace detection.
PDF ACM Multimedia 2022
点此查看论文截图
Exploiting Instance-based Mixed Sampling via Auxiliary Source Domain Supervision for Domain-adaptive Action Detection
Authors:Yifan Lu, Gurkirt Singh, Suman Saha, Luc Van Gool
We propose a novel domain adaptive action detection approach and a new adaptation protocol that leverages the recent advancements in image-level unsupervised domain adaptation (UDA) techniques and handle vagaries of instance-level video data. Self-training combined with cross-domain mixed sampling has shown remarkable performance gain in semantic segmentation in UDA (unsupervised domain adaptation) context. Motivated by this fact, we propose an approach for human action detection in videos that transfers knowledge from the source domain (annotated dataset) to the target domain (unannotated dataset) using mixed sampling and pseudo-label-based selftraining. The existing UDA techniques follow a ClassMix algorithm for semantic segmentation. However, simply adopting ClassMix for action detection does not work, mainly because these are two entirely different problems, i.e., pixel-label classification vs. instance-label detection. To tackle this, we propose a novel action instance mixed sampling technique that combines information across domains based on action instances instead of action classes. Moreover, we propose a new UDA training protocol that addresses the long-tail sample distribution and domain shift problem by using supervision from an auxiliary source domain (ASD). For the ASD, we propose a new action detection dataset with dense frame-level annotations. We name our proposed framework as domain-adaptive action instance mixing (DA-AIM). We demonstrate that DA-AIM consistently outperforms prior works on challenging domain adaptation benchmarks. The source code is available at https://github.com/wwwfan628/DA-AIM.
PDF
点此查看论文截图
Cross-Region Domain Adaptation for Class-level Alignment
Authors:Zhijie Wang, Xing Liu, Masanori Suganuma, Takayuki Okatani
Semantic segmentation requires a lot of training data, which necessitates costly annotation. There have been many studies on unsupervised domain adaptation (UDA) from one domain to another, e.g., from computer graphics to real images. However, there is still a gap in accuracy between UDA and supervised training on native domain data. It is arguably attributable to class-level misalignment between the source and target domain data. To cope with this, we propose a method that applies adversarial training to align two feature distributions in the target domain. It uses a self-training framework to split the image into two regions (i.e., trusted and untrusted), which form two distributions to align in the feature space. We term this approach cross-region adaptation (CRA) to distinguish from the previous methods of aligning different domain distributions, which we call cross-domain adaptation (CDA). CRA can be applied after any CDA method. Experimental results show that this always improves the accuracy of the combined CDA method, having updated the state-of-the-art.
PDF Under review in Computer Vision and Image Understanding
点此查看论文截图
Conditional Prompt Learning for Vision-Language Models
Authors:Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning — a recent trend in NLP — to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp’s static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at https://github.com/KaiyangZhou/CoOp.
PDF CVPR 2022. Update: Adds results on the DOSCO (DOmain Shift in COntext) benchmark
点此查看论文截图
Motion and Appearance Adaptation for Cross-Domain Motion Transfer
Authors:Borun Xu, Biao Wang, Jinhong Deng, Jiale Tao, Tiezheng Ge, Yuning Jiang, Wen Li, Lixin Duan
Motion transfer aims to transfer the motion of a driving video to a source image. When there are considerable differences between object in the driving video and that in the source image, traditional single domain motion transfer approaches often produce notable artifacts; for example, the synthesized image may fail to preserve the human shape of the source image (cf . Fig. 1 (a)). To address this issue, in this work, we propose a Motion and Appearance Adaptation (MAA) approach for cross-domain motion transfer, in which we regularize the object in the synthesized image to capture the motion of the object in the driving frame, while still preserving the shape and appearance of the object in the source image. On one hand, considering the object shapes of the synthesized image and the driving frame might be different, we design a shape-invariant motion adaptation module that enforces the consistency of the angles of object parts in two images to capture the motion information. On the other hand, we introduce a structure-guided appearance consistency module designed to regularize the similarity between the corresponding patches of the synthesized image and the source image without affecting the learned motion in the synthesized image. Our proposed MAA model can be trained in an end-to-end manner with a cyclic reconstruction loss, and ultimately produces a satisfactory motion transfer result (cf . Fig. 1 (b)). We conduct extensive experiments on human dancing dataset Mixamo-Video to Fashion-Video and human face dataset Vox-Celeb to Cufs; on both of these, our MAA model outperforms existing methods both quantitatively and qualitatively.
PDF fix bugs
点此查看论文截图
Learning to Prompt for Vision-Language Models
Authors:Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu
Large pre-trained vision-language models like CLIP have shown great potential in learning representations that are transferable across a wide range of downstream tasks. Different from the traditional representation learning that is based mostly on discretized labels, vision-language pre-training aligns images and texts in a common feature space, which allows zero-shot transfer to a downstream task via prompting, i.e., classification weights are synthesized from natural language describing classes of interest. In this work, we show that a major challenge for deploying such models in practice is prompt engineering, which requires domain expertise and is extremely time-consuming — one needs to spend a significant amount of time on words tuning since a slight change in wording could have a huge impact on performance. Inspired by recent advances in prompt learning research in natural language processing (NLP), we propose Context Optimization (CoOp), a simple approach specifically for adapting CLIP-like vision-language models for downstream image recognition. Concretely, CoOp models a prompt’s context words with learnable vectors while the entire pre-trained parameters are kept fixed. To handle different image recognition tasks, we provide two implementations of CoOp: unified context and class-specific context. Through extensive experiments on 11 datasets, we demonstrate that CoOp requires as few as one or two shots to beat hand-crafted prompts with a decent margin and is able to gain significant improvements over prompt engineering with more shots, e.g., with 16 shots the average gain is around 15% (with the highest reaching over 45%). Despite being a learning-based approach, CoOp achieves superb domain generalization performance compared with the zero-shot model using hand-crafted prompts.
PDF International Journal of Computer Vision (IJCV), 2022. Update: Adds results on the DOSCO (DOmain Shift in COntext) benchmark