2022-10-06 更新
CFL-Net: Image Forgery Localization Using Contrastive Learning
Authors:Fahim Faisal Niloy, Kishor Kumar Bhaumik, Simon S. Woo
Conventional forgery localizing methods usually rely on different forgery footprints such as JPEG artifacts, edge inconsistency, camera noise, etc., with cross-entropy loss to locate manipulated regions. However, these methods have the disadvantage of over-fitting and focusing on only a few specific forgery footprints. On the other hand, real-life manipulated images are generated via a wide variety of forgery operations and thus, leave behind a wide variety of forgery footprints. Therefore, we need a more general approach for image forgery localization that can work well on a variety of forgery conditions. A key assumption in underlying forged region localization is that there remains a difference of feature distribution between untampered and manipulated regions in each forged image sample, irrespective of the forgery type. In this paper, we aim to leverage this difference of feature distribution to aid in image forgery localization. Specifically, we use contrastive loss to learn mapping into a feature space where the features between untampered and manipulated regions are well-separated for each image. Also, our method has the advantage of localizing manipulated region without requiring any prior knowledge or assumption about the forgery type. We demonstrate that our work outperforms several existing methods on three benchmark image manipulation datasets. Code is available at https://github.com/niloy193/CFLNet.
PDF WACV 2023
点此查看论文截图
On the duality between contrastive and non-contrastive self-supervised learning
Authors:Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, Yann Lecun
Recent approaches in self-supervised learning of image representations can be categorized into different families of methods and, in particular, can be divided into contrastive and non-contrastive approaches. While differences between the two families have been thoroughly discussed to motivate new approaches, we focus more on the theoretical similarities between them. By designing contrastive and covariance based non-contrastive criteria that can be related algebraically and shown to be equivalent under limited assumptions, we show how close those families can be. We further study popular methods and introduce variations of them, allowing us to relate this theoretical result to current practices and show the influence (or lack thereof) of design choices on downstream performance. Motivated by our equivalence result, we investigate the low performance of SimCLR and show how it can match VICReg’s with careful hyperparameter tuning, improving significantly over known baselines. We also challenge the popular assumptions that contrastive and non-contrastive methods, respectively, need large batch sizes and output dimensions. Our theoretical and quantitative results suggest that the numerical gaps between contrastive and non-contrastive methods in certain regimes can be closed given better network design choices and hyperparameter tuning. The evidence shows that unifying different SOTA methods is an important direction to build a better understanding of self-supervised learning.
PDF