Vision Transformer


2022-10-04 更新

A Strong Transfer Baseline for RGB-D Fusion in Vision Transformers

Authors:Georgios Tziafas, Hamidreza Kasaei

The Vision Transformer (ViT) architecture has recently established its place in the computer vision literature, with multiple architectures for recognition of image data or other visual modalities. However, training ViTs for RGB-D object recognition remains an understudied topic, viewed in recent literature only through the lens of multi-task pretraining in multiple modalities. Such approaches are often computationally intensive and have not yet been applied for challenging object-level classification tasks. In this work, we propose a simple yet strong recipe for transferring pretrained ViTs in RGB-D domains for single-view 3D object recognition, focusing on fusing RGB and depth representations encoded jointly by the ViT. Compared to previous works in multimodal Transformers, the key challenge here is to use the atested flexibility of ViTs to capture cross-modal interactions at the downstream and not the pretraining stage. We explore which depth representation is better in terms of resulting accuracy and compare two methods for injecting RGB-D fusion within the ViT architecture (i.e., early vs. late fusion). Our results in the Washington RGB-D Objects dataset demonstrates that in such RGB $\rightarrow$ RGB-D scenarios, late fusion techniques work better than most popularly employed early fusion. With our transfer baseline, adapted ViTs score up to 95.1\% top-1 accuracy in Washington, achieving new state-of-the-art results in this benchmark. We additionally evaluate our approach with an open-ended lifelong learning protocol, where we show that our adapted RGB-D encoder leads to features that outperform unimodal encoders, even without explicit fine-tuning. We further integrate our method with a robot framework and demonstrate how it can serve as a perception utility in an interactive robot learning scenario, both in simulation and with a real robot.
PDF Submitted ICRA 23. Supplementary video here: https://youtu.be/L2gkDPkHsfo

点此查看论文截图

Towards a Unified View on Visual Parameter-Efficient Transfer Learning

Authors:Bruce X. B. Yu, Jianlong Chang, Lingbo Liu, Qi Tian, Chang Wen Chen

Since the release of various large-scale natural language processing (NLP) pre-trained models, parameter efficient transfer learning (PETL) has become a popular paradigm capable of achieving impressive performance on various downstream tasks. PETL aims at making good use of the representation knowledge in the pre-trained large models by fine-tuning a small number of parameters. Recently, it has also attracted increasing attention to developing various PETL techniques for vision tasks. Popular PETL techniques such as Prompt-tuning and Adapter have been proposed for high-level visual downstream tasks such as image classification and video recognition. However, Prefix-tuning remains under-explored for vision tasks. In this work, we intend to adapt large video-based models to downstream tasks with a good parameter-accuracy trade-off. Towards this goal, we propose a framework with a unified view called visual-PETL (V-PETL) to investigate the different aspects affecting the trade-off. Specifically, we analyze the positional importance of trainable parameters and differences between NLP and vision tasks in terms of data structures and pre-training mechanisms while implementing various PETL techniques, especially for the under-explored prefix-tuning technique. Based on a comprehensive understanding of differences between NLP and video data, we propose a new variation of prefix-tuning module called parallel attention (PATT) for video-based downstream tasks. An extensive empirical analysis on two video datasets via different frozen backbones has been carried and the findings show that the proposed PATT can effectively contribute to other PETL techniques. An effective scheme Swin-BAPAT derived from the proposed V-PETL framework achieves significantly better performance than the state-of-the-art AdaptFormer-Swin with slightly more parameters and outperforms full-tuning with far less parameters.
PDF under review

点此查看论文截图

OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression

Authors:Wanhua Li, Xiaoke Huang, Zheng Zhu, Yansong Tang, Xiu Li, Jie Zhou, Jiwen Lu

This paper presents a language-powered paradigm for ordinal regression. Existing methods usually treat each rank as a category and employ a set of weights to learn these concepts. These methods are easy to overfit and usually attain unsatisfactory performance as the learned concepts are mainly derived from the training set. Recent large pre-trained vision-language models like CLIP have shown impressive performance on various visual tasks. In this paper, we propose to learn the rank concepts from the rich semantic CLIP latent space. Specifically, we reformulate this task as an image-language matching problem with a contrastive objective, which regards labels as text and obtains a language prototype from a text encoder for each rank. While prompt engineering for CLIP is extremely time-consuming, we propose OrdinalCLIP, a differentiable prompting method for adapting CLIP for ordinal regression. OrdinalCLIP consists of learnable context tokens and learnable rank embeddings; The learnable rank embeddings are constructed by explicitly modeling numerical continuity, resulting in well-ordered, compact language prototypes in the CLIP space. Once learned, we can only save the language prototypes and discard the huge language model, resulting in zero additional computational overhead compared with the linear head counterpart. Experimental results show that our paradigm achieves competitive performance in general ordinal regression tasks, and gains improvements in few-shot and distribution shift settings for age estimation. The code is available at https://github.com/xk-huang/OrdinalCLIP.
PDF Accepted by NeurIPS2022. Code is available at https://github.com/xk-huang/OrdinalCLIP

点此查看论文截图

3D UX-Net: A Large Kernel Volumetric ConvNet Modernizing Hierarchical Transformer for Medical Image Segmentation

Authors:Ho Hin Lee, Shunxing Bao, Yuankai Huo, Bennett A. Landman

Vision transformers (ViTs) have quickly superseded convolutional networks (ConvNets) as the current state-of-the-art (SOTA) models for medical image segmentation. Hierarchical transformers (e.g., Swin Transformers) reintroduced several ConvNet priors and further enhanced the practical viability of adapting volumetric segmentation in 3D medical datasets. The effectiveness of hybrid approaches is largely credited to the large receptive field for non-local self-attention and the large number of model parameters. In this work, we propose a lightweight volumetric ConvNet, termed 3D UX-Net, which adapts the hierarchical transformer using ConvNet modules for robust volumetric segmentation. Specifically, we revisit volumetric depth-wise convolutions with large kernel size (e.g. starting from $7\times7\times7$) to enable the larger global receptive fields, inspired by Swin Transformer. We further substitute the multi-layer perceptron (MLP) in Swin Transformer blocks with pointwise depth convolutions and enhance model performances with fewer normalization and activation layers, thus reducing the number of model parameters. 3D UX-Net competes favorably with current SOTA transformers (e.g. SwinUNETR) using three challenging public datasets on volumetric brain and abdominal imaging: 1) MICCAI Challenge 2021 FLARE, 2) MICCAI Challenge 2021 FeTA, and 3) MICCAI Challenge 2022 AMOS. 3D UX-Net consistently outperforms SwinUNETR with improvement from 0.929 to 0.938 Dice (FLARE2021) and 0.867 to 0.874 Dice (Feta2021). We further evaluate the transfer learning capability of 3D UX-Net with AMOS2022 and demonstrates another improvement of $2.27\%$ Dice (from 0.880 to 0.900). The source code with our proposed model are available at https://github.com/MASILab/3DUX-Net.
PDF 9 pages

点此查看论文截图

Visual Prompt Tuning for Generative Transfer Learning

Authors:Kihyuk Sohn, Yuan Hao, José Lezama, Luisa Polania, Huiwen Chang, Han Zhang, Irfan Essa, Lu Jiang

Transferring knowledge from an image synthesis model trained on a large dataset is a promising direction for learning generative image models from various domains efficiently. While previous works have studied GAN models, we present a recipe for learning vision transformers by generative knowledge transfer. We base our framework on state-of-the-art generative vision transformers that represent an image as a sequence of visual tokens to the autoregressive or non-autoregressive transformers. To adapt to a new domain, we employ prompt tuning, which prepends learnable tokens called prompt to the image token sequence, and introduce a new prompt design for our task. We study on a variety of visual domains, including visual task adaptation benchmark~\cite{zhai2019large}, with varying amount of training images, and show effectiveness of knowledge transfer and a significantly better image generation quality over existing works.
PDF technical report

点此查看论文截图

Global Context Vision Transformers

Authors:Ali Hatamizadeh, Hongxu Yin, Jan Kautz, Pavlo Molchanov

We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision tasks. The core of the novel model are global context self-attention modules, joint with standard local self-attention, to effectively yet efficiently model both long and short-range spatial interactions, as an alternative to complex operations such as an attention masks or local windows shifting. While the local self-attention modules are responsible for modeling short-range information, the global query tokens are shared across all global self-attention modules to interact with local key and values. In addition, we address the lack of inductive bias in ViTs and improve the modeling of inter-channel dependencies by proposing a novel downsampler which leverages a parameter-efficient fused inverted residual block. The proposed GC ViT achieves new state-of-the-art performance across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, the tiny, small and base variants of GC ViT with 28M, 51M and 90M parameters achieve 83.4%, 83.9% and 84.4% Top-1 accuracy, respectively, surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based Swin Transformer. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation on MS COCO and ADE20K datasets outperform prior work consistently, sometimes by large margins. Code and pre-trained models are available at https://github.com/NVlabs/GCViT.
PDF 15 pages, 8 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录