2022-10-04 更新
Smooth image-to-image translations with latent space interpolations
Authors:Yahui Liu, Enver Sangineto, Yajing Chen, Linchao Bao, Haoxian Zhang, Nicu Sebe, Bruno Lepri, Marco De Nadai
Multi-domain image-to-image (I2I) translations can transform a source image according to the style of a target domain. One important, desired characteristic of these transformations, is their graduality, which corresponds to a smooth change between the source and the target image when their respective latent-space representations are linearly interpolated. However, state-of-the-art methods usually perform poorly when evaluated using inter-domain interpolations, often producing abrupt changes in the appearance or non-realistic intermediate images. In this paper, we argue that one of the main reasons behind this problem is the lack of sufficient inter-domain training data and we propose two different regularization methods to alleviate this issue: a new shrinkage loss, which compacts the latent space, and a Mixup data-augmentation strategy, which flattens the style representations between domains. We also propose a new metric to quantitatively evaluate the degree of the interpolation smoothness, an aspect which is not sufficiently covered by the existing I2I translation metrics. Using both our proposed metric and standard evaluation protocols, we show that our regularization techniques can improve the state-of-the-art multi-domain I2I translations by a large margin. Our code will be made publicly available upon the acceptance of this article.
PDF
点此查看论文截图
EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations
Authors:Min Zhao, Fan Bao, Chongxuan Li, Jun Zhu
Score-based diffusion generative models (SDGMs) have achieved the SOTA FID results in unpaired image-to-image translation (I2I). However, we notice that existing methods totally ignore the training data in the source domain, leading to sub-optimal solutions for unpaired I2I. To this end, we propose energy-guided stochastic differential equations (EGSDE) that employs an energy function pretrained on both the source and target domains to guide the inference process of a pretrained SDE for realistic and faithful unpaired I2I. Building upon two feature extractors, we carefully design the energy function such that it encourages the transferred image to preserve the domain-independent features and discard domainspecific ones. Further, we provide an alternative explanation of the EGSDE as a product of experts, where each of the three experts (corresponding to the SDE and two feature extractors) solely contributes to faithfulness or realism. Empirically, we compare EGSDE to a large family of baselines on three widely-adopted unpaired I2I tasks under four metrics. EGSDE not only consistently outperforms existing SDGMs-based methods in almost all settings but also achieves the SOTA realism results (e.g., FID of 65.82 in Cat to Dog and FID of 59.75 in Wild to Dog on AFHQ) without harming the faithful performance.
PDF