GAN


2022-10-04 更新

Towards Realistic 3D Embedding via View Alignment

Authors:Changgong Zhang, Fangneng Zhan, Shijian Lu, Feiying Ma, Xuansong Xie

Recent advances in generative adversarial networks (GANs) have achieved great success in automated image composition that generates new images by embedding interested foreground objects into background images automatically. On the other hand, most existing works deal with foreground objects in two-dimensional (2D) images though foreground objects in three-dimensional (3D) models are more flexible with 360-degree view freedom. This paper presents an innovative View Alignment GAN (VA-GAN) that composes new images by embedding 3D models into 2D background images realistically and automatically. VA-GAN consists of a texture generator and a differential discriminator that are inter-connected and end-to-end trainable. The differential discriminator guides to learn geometric transformation from background images so that the composed 3D models can be aligned with the background images with realistic poses and views. The texture generator adopts a novel view encoding mechanism for generating accurate object textures for the 3D models under the estimated views. Extensive experiments over two synthesis tasks (car synthesis with KITTI and pedestrian synthesis with Cityscapes) show that VA-GAN achieves high-fidelity composition qualitatively and quantitatively as compared with state-of-the-art generation methods.
PDF 12 pages, 7 figures

点此查看论文截图

Hallucinating Pose-Compatible Scenes

Authors:Tim Brooks, Alexei A. Efros

What does human pose tell us about a scene? We propose a task to answer this question: given human pose as input, hallucinate a compatible scene. Subtle cues captured by human pose — action semantics, environment affordances, object interactions — provide surprising insight into which scenes are compatible. We present a large-scale generative adversarial network for pose-conditioned scene generation. We significantly scale the size and complexity of training data, curating a massive meta-dataset containing over 19 million frames of humans in everyday environments. We double the capacity of our model with respect to StyleGAN2 to handle such complex data, and design a pose conditioning mechanism that drives our model to learn the nuanced relationship between pose and scene. We leverage our trained model for various applications: hallucinating pose-compatible scene(s) with or without humans, visualizing incompatible scenes and poses, placing a person from one generated image into another scene, and animating pose. Our model produces diverse samples and outperforms pose-conditioned StyleGAN2 and Pix2Pix/Pix2PixHD baselines in terms of accurate human placement (percent of correct keypoints) and quality (Frechet inception distance).
PDF

点此查看论文截图

Visual Prompt Tuning for Generative Transfer Learning

Authors:Kihyuk Sohn, Yuan Hao, José Lezama, Luisa Polania, Huiwen Chang, Han Zhang, Irfan Essa, Lu Jiang

Transferring knowledge from an image synthesis model trained on a large dataset is a promising direction for learning generative image models from various domains efficiently. While previous works have studied GAN models, we present a recipe for learning vision transformers by generative knowledge transfer. We base our framework on state-of-the-art generative vision transformers that represent an image as a sequence of visual tokens to the autoregressive or non-autoregressive transformers. To adapt to a new domain, we employ prompt tuning, which prepends learnable tokens called prompt to the image token sequence, and introduce a new prompt design for our task. We study on a variety of visual domains, including visual task adaptation benchmark~\cite{zhai2019large}, with varying amount of training images, and show effectiveness of knowledge transfer and a significantly better image generation quality over existing works.
PDF technical report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录