Few-Shot


2022-10-04 更新

Learnable Distribution Calibration for Few-Shot Class-Incremental Learning

Authors:Binghao Liu, Boyu Yang, Lingxi Xie, Ren Wang, Qi Tian, Qixiang Ye

Few-shot class-incremental learning (FSCIL) faces challenges of memorizing old class distributions and estimating new class distributions given few training samples. In this study, we propose a learnable distribution calibration (LDC) approach, with the aim to systematically solve these two challenges using a unified framework. LDC is built upon a parameterized calibration unit (PCU), which initializes biased distributions for all classes based on classifier vectors (memory-free) and a single covariance matrix. The covariance matrix is shared by all classes, so that the memory costs are fixed. During base training, PCU is endowed with the ability to calibrate biased distributions by recurrently updating sampled features under the supervision of real distributions. During incremental learning, PCU recovers distributions for old classes to avoid forgetting', as well as estimating distributions and augmenting samples for new classes to alleviateover-fitting’ caused by the biased distributions of few-shot samples. LDC is theoretically plausible by formatting a variational inference procedure. It improves FSCIL’s flexibility as the training procedure requires no class similarity priori. Experiments on CUB200, CIFAR100, and mini-ImageNet datasets show that LDC outperforms the state-of-the-arts by 4.64%, 1.98%, and 3.97%, respectively. LDC’s effectiveness is also validated on few-shot learning scenarios.
PDF

点此查看论文截图

Automatic Speech Recognition for Speech Assessment of Persian Preschool Children

Authors:Amirhossein Abaskohi, Fatemeh Mortazavi, Hadi Moradi

Preschool evaluation is crucial because it gives teachers and parents influential knowledge about children’s growth and development. The COVID-19 pandemic has highlighted the necessity of online assessment for preschool children. One of the areas that should be tested is their ability to speak. Employing an Automatic Speech Recognition (ASR) system would not help since they are pre-trained on voices that differ from children’s in terms of frequency and amplitude. Because most of these are pre-trained with data in a specific range of amplitude, their objectives do not make them ready for voices in different amplitudes. To overcome this issue, we added a new objective to the masking objective of the Wav2Vec 2.0 model called Random Frequency Pitch (RFP). In addition, we used our newly introduced dataset to fine-tune our model for Meaningless Words (MW) and Rapid Automatic Naming (RAN) tests. Using masking in concatenation with RFP outperforms the masking objective of Wav2Vec 2.0 by reaching a Word Error Rate (WER) of 1.35. Our new approach reaches a WER of 6.45 on the Persian section of the CommonVoice dataset. Furthermore, our novel methodology produces positive outcomes in zero- and few-shot scenarios.
PDF 7 pages, 6 figures, 4 tables, 1 algorithm

点此查看论文截图

OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression

Authors:Wanhua Li, Xiaoke Huang, Zheng Zhu, Yansong Tang, Xiu Li, Jie Zhou, Jiwen Lu

This paper presents a language-powered paradigm for ordinal regression. Existing methods usually treat each rank as a category and employ a set of weights to learn these concepts. These methods are easy to overfit and usually attain unsatisfactory performance as the learned concepts are mainly derived from the training set. Recent large pre-trained vision-language models like CLIP have shown impressive performance on various visual tasks. In this paper, we propose to learn the rank concepts from the rich semantic CLIP latent space. Specifically, we reformulate this task as an image-language matching problem with a contrastive objective, which regards labels as text and obtains a language prototype from a text encoder for each rank. While prompt engineering for CLIP is extremely time-consuming, we propose OrdinalCLIP, a differentiable prompting method for adapting CLIP for ordinal regression. OrdinalCLIP consists of learnable context tokens and learnable rank embeddings; The learnable rank embeddings are constructed by explicitly modeling numerical continuity, resulting in well-ordered, compact language prototypes in the CLIP space. Once learned, we can only save the language prototypes and discard the huge language model, resulting in zero additional computational overhead compared with the linear head counterpart. Experimental results show that our paradigm achieves competitive performance in general ordinal regression tasks, and gains improvements in few-shot and distribution shift settings for age estimation. The code is available at https://github.com/xk-huang/OrdinalCLIP.
PDF Accepted by NeurIPS2022. Code is available at https://github.com/xk-huang/OrdinalCLIP

点此查看论文截图

Contrastive Graph Few-Shot Learning

Authors:Chunhui Zhang, Hongfu Liu, Jundong Li, Yanfang Ye, Chuxu Zhang

Prevailing deep graph learning models often suffer from label sparsity issue. Although many graph few-shot learning (GFL) methods have been developed to avoid performance degradation in face of limited annotated data, they excessively rely on labeled data, where the distribution shift in the test phase might result in impaired generalization ability. Additionally, they lack a general purpose as their designs are coupled with task or data-specific characteristics. To this end, we propose a general and effective Contrastive Graph Few-shot Learning framework (CGFL). CGFL leverages a self-distilled contrastive learning procedure to boost GFL. Specifically, our model firstly pre-trains a graph encoder with contrastive learning using unlabeled data. Later, the trained encoder is frozen as a teacher model to distill a student model with a contrastive loss. The distilled model is finally fed to GFL. CGFL learns data representation in a self-supervised manner, thus mitigating the distribution shift impact for better generalization and making model task and data-independent for a general graph mining purpose. Furthermore, we introduce an information-based method to quantitatively measure the capability of CGFL. Comprehensive experiments demonstrate that CGFL outperforms state-of-the-art baselines on several graph mining tasks in the few-shot scenario. We also provide quantitative measurement of CGFL’s success.
PDF

点此查看论文截图

Few-Shot Segmentation via Rich Prototype Generation and Recurrent Prediction Enhancement

Authors:Hongsheng Wang, Xiaoqi Zhao, Youwei Pang, Jinqing Qi

Prototype learning and decoder construction are the keys for few-shot segmentation. However, existing methods use only a single prototype generation mode, which can not cope with the intractable problem of objects with various scales. Moreover, the one-way forward propagation adopted by previous methods may cause information dilution from registered features during the decoding process. In this research, we propose a rich prototype generation module (RPGM) and a recurrent prediction enhancement module (RPEM) to reinforce the prototype learning paradigm and build a unified memory-augmented decoder for few-shot segmentation, respectively. Specifically, the RPGM combines superpixel and K-means clustering to generate rich prototype features with complementary scale relationships and adapt the scale gap between support and query images. The RPEM utilizes the recurrent mechanism to design a round-way propagation decoder. In this way, registered features can provide object-aware information continuously. Experiments show that our method consistently outperforms other competitors on two popular benchmarks PASCAL-${ {5}^{i} }$ and COCO-${ {20}^{i} }$.
PDF Accepted in PRCV 2022

点此查看论文截图

Matryoshka Representation Learning

Authors:Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, Ali Farhadi

Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities — vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.
PDF 35 pages, 12 figures. NeurIPS 2022 camera ready publication

点此查看论文截图

FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation

Authors:Parker Riley, Timothy Dozat, Jan A. Botha, Xavier Garcia, Dan Garrette, Jason Riesa, Orhan Firat, Noah Constant

We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task
PDF

点此查看论文截图

CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth Pre-training

Authors:Tianyu Huang, Bowen Dong, Yunhan Yang, Xiaoshui Huang, Rynson W. H. Lau, Wanli Ouyang, Wangmeng Zuo

Pre-training across 3D vision and language remains under development because of limited training data. Recent works attempt to transfer vision-language pre-training models to 3D vision. PointCLIP converts point cloud data to multi-view depth maps, adopting CLIP for shape classification. However, its performance is restricted by the domain gap between rendered depth maps and images, as well as the diversity of depth distributions. To address this issue, we propose CLIP2Point, an image-depth pre-training method by contrastive learning to transfer CLIP to the 3D domain, and adapt it to point cloud classification. We introduce a new depth rendering setting that forms a better visual effect, and then render 52,460 pairs of images and depth maps from ShapeNet for pre-training. The pre-training scheme of CLIP2Point combines cross-modality learning to enforce the depth features for capturing expressive visual and textual features and intra-modality learning to enhance the invariance of depth aggregation. Additionally, we propose a novel Dual-Path Adapter (DPA) module, i.e., a dual-path structure with simplified adapters for few-shot learning. The dual-path structure allows the joint use of CLIP and CLIP2Point, and the simplified adapter can well fit few-shot tasks without post-search. Experimental results show that CLIP2Point is effective in transferring CLIP knowledge to 3D vision. Our CLIP2Point outperforms PointCLIP and other self-supervised 3D networks, achieving state-of-the-art results on zero-shot and few-shot classification.
PDF

点此查看论文截图

Weak Novel Categories without Tears: A Survey on Weak-Shot Learning

Authors:Li Niu

Deep learning is a data-hungry approach, which requires massive training data. However, it is time-consuming and labor-intensive to collect abundant fully-annotated training data for all categories. Assuming the existence of base categories with adequate fully-annotated training samples, different paradigms requiring fewer training samples or weaker annotations for novel categories have attracted growing research interest. Among them, zero-shot (resp., few-shot) learning explores using zero (resp., a few) training samples for novel categories, which lowers the quantity requirement for novel categories. Instead, weak-shot learning lowers the quality requirement for novel categories. Specifically, sufficient training samples are collected for novel categories but they only have weak annotations. In different tasks, weak annotations are presented in different forms (e.g., noisy labels for image classification, image labels for object detection, bounding boxes for segmentation), similar to the definitions in weakly supervised learning. Therefore, weak-shot learning can also be treated as weakly supervised learning with auxiliary fully supervised categories. In this paper, we discuss the existing weak-shot learning methodologies in different tasks and summarize the codes at https://github.com/bcmi/Awesome-Weak-Shot-Learning.
PDF

点此查看论文截图

Large Language Models are Zero-Shot Reasoners

Authors:Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa

Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs’ ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding “Let’s think step by step” before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with 175B parameter InstructGPT model, as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot capabilities of LLMs, suggesting high-level, multi-task broad cognitive capabilities may be extracted by simple prompting. We hope our work not only serves as the minimal strongest zero-shot baseline for the challenging reasoning benchmarks, but also highlights the importance of carefully exploring and analyzing the enormous zero-shot knowledge hidden inside LLMs before crafting finetuning datasets or few-shot exemplars.
PDF Accepted to NeurIPS2022. Our code is available at https://github.com/kojima-takeshi188/zero_shot_cot

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录