对抗攻击


2022-10-04 更新

Physical Adversarial Attack meets Computer Vision: A Decade Survey

Authors:Hui Wei, Hao Tang, Xuemei Jia, Hanxun Yu, Zhubo Li, Zhixiang Wang, Shin’ichi Satoh, Zheng Wang

Although Deep Neural Networks (DNNs) have achieved impressive results in computer vision, their exposed vulnerability to adversarial attacks remains a serious concern. A series of works has shown that by adding elaborate perturbations to images, DNNs could have catastrophic degradation in performance metrics. And this phenomenon does not only exist in the digital space but also in the physical space. Therefore, estimating the security of these DNNs-based systems is critical for safely deploying them in the real world, especially for security-critical applications, e.g., autonomous cars, video surveillance, and medical diagnosis. In this paper, we focus on physical adversarial attacks and provide a comprehensive survey of over 150 existing papers. We first clarify the concept of the physical adversarial attack and analyze its characteristics. Then, we define the adversarial medium, essential to perform attacks in the physical world. Next, we present the physical adversarial attack methods in task order: classification, detection, and re-identification, and introduce their performance in solving the trilemma: effectiveness, stealthiness, and robustness. In the end, we discuss the current challenges and potential future directions.
PDF 32 pages. arXiv admin note: text overlap with arXiv:2207.04718, arXiv:2011.13375 by other authors

点此查看论文截图

Shadows Aren’t So Dangerous After All: A Fast and Robust Defense Against Shadow-Based Adversarial Attacks

Authors:Andrew Wang, Wyatt Mayor, Ryan Smith, Gopal Nookula, Gregory Ditzler

Robust classification is essential in tasks like autonomous vehicle sign recognition, where the downsides of misclassification can be grave. Adversarial attacks threaten the robustness of neural network classifiers, causing them to consistently and confidently misidentify road signs. One such class of attack, shadow-based attacks, causes misidentifications by applying a natural-looking shadow to input images, resulting in road signs that appear natural to a human observer but confusing for these classifiers. Current defenses against such attacks use a simple adversarial training procedure to achieve a rather low 25\% and 40\% robustness on the GTSRB and LISA test sets, respectively. In this paper, we propose a robust, fast, and generalizable method, designed to defend against shadow attacks in the context of road sign recognition, that augments source images with binary adaptive threshold and edge maps. We empirically show its robustness against shadow attacks, and reformulate the problem to show its similarity to $\varepsilon$ perturbation-based attacks. Experimental results show that our edge defense results in 78\% robustness while maintaining 98\% benign test accuracy on the GTSRB test set, with similar results from our threshold defense. Link to our code is in the paper.
PDF This is a draft version - our core results are reported, but additional experiments for journal submission are still being run

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录